Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Atmos...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the Atmospheric Sciences
Article
License: implied-oa
Data sources: UnpayWall
Journal of the Atmospheric Sciences
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Cumulus Parameterization with State-Dependent Entrainment Rate. Part I: Description and Sensitivity to Temperature and Humidity Profiles

Authors: Minoru Chikira; Masahiro Sugiyama;

A Cumulus Parameterization with State-Dependent Entrainment Rate. Part I: Description and Sensitivity to Temperature and Humidity Profiles

Abstract

Abstract A new cumulus parameterization is developed for which an entraining plume model is adopted. The lateral entrainment rate varies vertically depending on the surrounding environment. Two different formulations are examined for the rate. The cumulus ensemble is spectrally represented according to the updraft velocity at cloud base. Cloud-base mass flux is determined with prognostic convective kinetic energy closure. The entrainment rate tends to be large near cloud base because of the small updraft velocity near that level. Deep convection tends to be suppressed when convective available potential energy is small because of upward reduction of in-cloud moist static energy. Dry environmental air significantly reduces in-cloud humidity mainly because of the large entrainment rate in the lower troposphere, which leads to suppression of deep convection, consistent with observations and previous results of cloud-resolving models. The change in entrainment rate has the potential to influence cumulus convection through many feedbacks. The results of an atmospheric general circulation model are improved in both climatology and variability. A representation of the South Pacific convergence zone and the double intertropical convergence zone is improved. The moist Kelvin waves are represented without empirical triggering schemes with a reasonable equivalent depth. A spectral analysis shows a strong signal of the Madden–Julian oscillation. The scheme provides new insights and better understanding of the interaction between cumuli and the surrounding environment.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    135
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
135
Top 1%
Top 10%
Top 10%
hybrid