Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aquaculturearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aquaculture
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Aquaculture
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2011
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2011
Data sources: HAL INRAE
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prediction of fillet fatty acid composition of market-size gilthead sea bream (Sparus aurata) using a regression modelling approach

Authors: Ballester-Lozano, G.F.; Benedito-Palos, L.; Navarro, J.C.; Kaushik, Sadasivam, S.; Perez-Sanchez, J.;

Prediction of fillet fatty acid composition of market-size gilthead sea bream (Sparus aurata) using a regression modelling approach

Abstract

Gilthead sea bream (Sparus aurata) were fed in triplicate groups with a commercial standard diet from the juvenile stage to male-female sex reversal under natural day length and temperature conditions. Every 3-4 months during the two-year production cycle, 9 fish were randomly selected and sampled for flesh composition analyses of total lipid levels and fatty acid (FA) composition. Curvilinear regressions fitting total lipid levels and % FAs in total lipids were made to underline the differential distribution of a given fillet FA within neutral and polar lipid fractions. This dataset along with published results on market-size fish were combined for multilinear regression approaches, with the aim of describing strong relationships (P < 0.0001) between fillet FA composition and two independent variables: dietary FA composition and fillet lipid level. For saturated (14:0, 16:0, 18:0) and monounsaturated (16:1n-7, 18:1n-7, 18:1n-9, 20:1n-9) FAs, the overall variance in fillet FA composition is primarily explained by dietary FA composition and secondly by fillet lipid level. This second independent variable also contributes to explain the variations observed in arachidonic acid (20:4n-6) and docosahexaenoic acid (22:6n-3), but a statistically significant contribution is not found for linoleic acid (18:2n-6), linolenic acid (18:3n-3), eicosapentaenoic acid (20:5n-3) and docosapentaenoic acid (22:5n-3). The consistency of these predictive equations in our particular rearing conditions was proved by means of a test validation trial, using fish fed an experimental diet based on plant proteins and fish oil.

This research was funded by Spanish MICINN through AQUAFAT (AGL2009-07797; Predictive modelling of flesh fatty acid composition in cultured fish species with different muscle lipid content) and AQUAGENOMICS (CSD2007-00002, Improvement of aquaculture production by the use of biotechnological tools) projects. Additional funding was obtained from the “Generalitat Valenciana” (research grant PROMETEO 2010/006). GFB-L was recipient of a Spanish PhD fellowship from the Diputación Provincial de Castellón.

26 p., 5 figures, 1 table and references

Country
France
Keywords

Diet composition, Sparids, Lipid deposition, DAURADE ROYALE, MUSCLE FAT, [SDV.SA.STP] Life Sciences [q-bio]/Agricultural sciences/Sciences and technics of fishery, SPARID, Fish production cycle, DIET COMPOSITION, [SDV.SA.STP]Life Sciences [q-bio]/Agricultural sciences/Sciences and technics of fishery, LIPID DEPOSITION, Muscle, FISH PRODUCTION CYCLE

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 46
    download downloads 91
  • 46
    views
    91
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
22
Top 10%
Average
Top 10%
46
91
Green
bronze