Powered by OpenAIRE graph
Found an issue? Give us feedback

NSFGEO-NERC: Sulfur Cycling at Subduction Zones

Funder: UK Research and InnovationProject code: NE/T010940/1
Funded under: NERC Funder Contribution: 224,728 GBP

NSFGEO-NERC: Sulfur Cycling at Subduction Zones

Description

Subduction zones are a key valve mediating global S processing and the climatic effects of arc volcanism, the economic potential of arc magmas, and the oxidation state of solid Earth reservoirs. Yet, the inputs, processing and recycling of S throughout the subduction system are still inaccurately known. This international project targets major unknowns in the sulfur cycle at subduction zones. The US-NSF focus of this project (PI Plank, LDEO) will fill a key knowledge gap in terms of S inputs to the mantle at subduction zones. It will involve extensive analysis of sedimentary sections at the Tonga, Marianas, Aleutians, Alaska and Central America trenches, chosen to represent end-member oceanic environments for sulfur deposition and diagenesis and extreme isotopic variations. Ocean Drilling Programs cores will be analyzed by XRF core scanning, a strategic approach to quantify heterogeneously disseminated pyrite and barite, major hosts of sulfur in sediment. Core scanning results will guide discrete sampling for bulk sulfur and sulfur isotope analyses at the University of Palermo, in collaboration with Prof. Aiuppa and Vizzini. Pilot data collected in Palermo demonstrate the quality of the coupled Elemental Analyzer-Mass Spectrometry technique and the clear sulfide- vs. sulfate-dominated regimes that may occur in a single sedimentary section. The outcome will be the first comprehensive estimates (with uncertainties) for the fluxes and isotopic compositions of S into end-member trenches and improved global estimates. The UK-NERC part of this project (PI Mather, Oxford) will take a novel approach to understanding volcanic arc S outputs. It will measure for the first time the sulfur isotopic composition in undegassed olivine-hosted arc melt inclusions. Pilot data collected at NERC Ion Microprobe Facility at Edinburgh demonstrate the viability of the technique, and yield positive delta(34)S in melt inclusions from Fuego volcano. Planned work will include well-studied melt inclusions suites from the same subducting systems as the sediment targets (above). This will ensure close collaboration between the US and UK parts of this project, and allow for the first-time direct tracing of sulfur isotopes from sediment input to arc output.

Data Management Plans
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e96b5744c56e54a2fec6f7e645d6fce7&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down