Powered by OpenAIRE graph
Found an issue? Give us feedback

3DSynth: Design and fabrication of cartridges for digital chemical synthesis

Funder: UK Research and InnovationProject code: EP/S017046/1
Funded under: EPSRC Funder Contribution: 999,034 GBP

3DSynth: Design and fabrication of cartridges for digital chemical synthesis

Description

This project proposes developing a new approach to chemical synthesis by constructing and demonstrating a software-based toolkit aimed specifically at synthetic chemists, allowing them to easily digitise and democratise their synthetic procedures in the form of code used to create multistage reactor systems and proto-type them using 3D printing. We aim to explore and validate this concept for a range of targets, from organic to inorganic and nano-scale materials. In preliminary studies published in Science (Science 2018, 359, 314-319) earlier this year we have shown that the digitisation of chemical synthesis is possible. In this grant we propose to expand this methodology that is currently allowing individual reaction steps to be be embodied in parametrically defined reactor 'modules'. The modules are then combined into extended, multi-step sequences, enabling us to turn the complex processes of batch chemical synthesis into small scale, on demand, synthesis cartridges. These cartridges can then be accompanied by a validated set of operating instructions which can be carried out either manually or via an automated interface, minimising the time and skill required to effect the synthesis whilst simultaneously maximising the reproducibility. Using 3D printed reactionware, developed by us in a £10 K 'creativity at home EPSRC project', in conjunction with robotic interfaces for liquid handling, this project will explore how to chemicals can be made in low-resource / limited skill environment after digitisation, aiming at lower costs, greater reproducibility, and vastly expanding the variety of materials available to the end user. Further, we aim that this toolkit can be used to enable mechanistic and material discovery studies by allowing the manipulation of the physical structure of the reactors to constrain the synthetic and reaction parameters vastly decreasing the timescales for customisation and further development.

Data Management Plans
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::bc262d9053d5dfdbf698fd752e52f2b5&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down