Loading
In many countries around the world, the transport sector claims a major share of the public spending. For example, the total public spending on transport in the UK was £22.5 billion in 2018. The potential impacts of new transport decisions can be evaluated using mathematical models to predict what people will do, when and where, and how they will travel in-between different locations in any given scenario. These travel behaviour models are typically based on theories of economics and psychology and developed using survey data. However, new forms of mobility (e.g. self-driving cars, Uber, shared-bikes) and new types of users (e.g. older travellers, migrants) are leading to radical changes in the mobility landscape. The traditional data and models are failing to deal with the rising complexities of activity and travel patterns which motivates NEXUS. The limitations of the current mainstream models arise from multiple factors. Firstly, they assume travel behaviour is solely based on the age, income, attitudes, etc. of the traveller and the attributes of the alternatives (e.g. travel times, costs). They do not account for the myriad of psychological factors that could influence an individual's decision, for example, the effect of stress, fatigue or the 'thinking process' more generally. Secondly, the data used for developing the models typically rely on small-scale surveys where travellers are asked to report/log their past behaviour or to state their choices based on descriptions of hypothetical scenarios, which very often are not reliable measures of the real-world travel behaviour. On a parallel stream, large amounts of mobility data are constantly generated from sources like GPS, mobile phones and social media. Advanced technologies and machine learning (ML) methods have also made it possible to measure the 'mental state' of the travellers by simple wristbands, discrete clip-ons and smartphone-based sensors and infer their thinking processes from brain imaging. Further, advances in virtual reality (VR) technology has made it possible to immerse travellers in future scenarios to obtain more realistic responses. Bringing together new data and methodologies can lead to a step change in travel behaviour modelling - but the framework to unify these different streams of research is yet to be formulated. NEXUS proposes to address this research gap by developing methodologies to augment travel behaviour models with novel forms of data. These will include: (a) real-world mobility data generated from GPS, mobile phones and other passive sources; (b) dynamic data about the 'state-of-the-mind' measured using sensors; and (c) experimental data on travel behaviour from VR settings of hypothetical future scenarios. Utilizing passive mobility data and sensing mental states will involve utilizing state-of-the-art ML and ubiquitous computing techniques. Combining the different types of real-world and experimental data sources for predicting behaviour in new scenarios will involve integrating these in traditional travel behaviour modelling framework. Merging these techniques, for the very first time outside the lab-setting, will produce a richer set of travel behaviour models that can better deal with radically different transport scenarios and user-groups in the future. The models will be implemented in a microsimulation platform to simulate the mobility behaviour in different policy scenarios with increased accuracy and aid the planners and policy-makers in making more informed investment decisions. This multi-disciplinary research will build on and extend my past experience in behavioural modelling using big data and sensors. It will support my transition to a research leadership role at the University of Leeds and collaboration with globally renowned academics in transport, psychology and computing. Partnership with non-academic partners will ensure the quick transition of the research to practice and real-world impact.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::261094b2ead3c56b7229bab9848ea24f&type=result"></script>');
-->
</script>