Powered by OpenAIRE graph
Found an issue? Give us feedback

3DPILcat

Efficient CO2 capture and valorisation with 3D printed catalytic reactors
Funder: European CommissionProject code: 101026335 Call for proposal: H2020-MSCA-IF-2020
Funded under: H2020 | MSCA-IF-EF-ST Overall Budget: 172,932 EURFunder Contribution: 172,932 EUR
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
190
260
Description

CO2 is the most abundant renewable carbon source in nature and considerate the major greenhouse gas. The development of carbon neutral processes plays a major role against climate change. Despite the large number of recent reports related to CO2 activation strategies, a viable solution with potential industrial applicability is lacking due to the harsh conditions or low productivities. Ideally, the CO2 should be captured and activated under mild conditions of pressure and temperature. The combination of optimal mixing and high throughput offered by flow chemistry and the ability of catalytic structured reactors to transform CO2 under mild conditions, offers great potential to overcome these limitations. Thus, 3D printing (3DP) techniques appears as a versatile method to fabricate catalytic flow devices with scaling up potential, due to their simple, flexible and adaptable features. Polymeric ionic liquids (PILs) emerged as an alternative to fabricate 3D multifunctional structures, with unique, synergistic catalytic and adsorbing abilities. The choice of MATERIAL, REACTOR ARCHITECTURE and the NATURE OF THE CATALYSTS plays an essential role in the efficient CO2 capture and utilization (CCU). 3DPILcat will develop an extremely efficient, configurable, green and scalable protocol for the preparation of TAILORED AND STRUCTURED CATALYTIC DEVICES FOR CCU. The catalysts will be based in PIL co-polymers with CO2-philic moieties, which will capture CO2 at near atmospheric pressure and catalyse the conversion into cyclic carbonates from epoxides and olefins. Combined with a designed architecture obtained from 3DP methodology, the device will act as smart flow reactors highly active, selective and recyclable. The whole body of the structured devices will act as both adsorbent and catalytic agents, employing batch and flow conditions. For the 1st time the PIL, 3DP AND REACTOR ENGINEERING combination applied to CCU will be demonstrated, creating an innovative catalytic product.

Partners
Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 190
    download downloads 260
  • 190
    views
    260
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::d9b42661dba07e864f3b23f1cc019616&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down