Loading
This proposed project directly address one of the priority areas outlines in EC's Green Deal programme. The usage of textured solar cells to reduce the reflection from the air-solar cell interface, which ultimately enhances absorption, has been widely reported. There is a large number of texturing patterns available such as: pyramids, micropillars, nanowires, nanoholes, plasmonic, etc. The most commonly used patterns have been widely studied and have reached very high levels of optimisations. Nevertheless, these regular patterns have some degree of frequency dependence and hence only a narrow wavelength range optimisation, and thus limits the overall performance. Our preliminary study suggest that absorption efficiency can be further increased by at least 20%, by simply optimising the shape and periodicity of the nanowires. This proposal introduces an innovative combination of the patterns, both circular and noncircular nanowires, additionally including air-holes which increases the solar cell efficiency. Preliminary result also shows that by introducing an offset in the air-hole position, and thus breaking the symmetry, achieves an even higher conversion efficiency, but without increasing the fabrication cost, as simple single-stage mask can be used. By doing this, the improvement on the performance is expected to affect over the whole solar wavelength spectrum. Solar cells with a higher efficiency, but without increased fabrication cost can be a game changer, in supporting UN SDG7, affordable and clean energy. Through hands-on research, the Researcher of this project will enhance his knowledge and skills so can contribute to the European Research Area agenda.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::cb08f512a6c62d2277a05ddd3fe41559&type=result"></script>');
-->
</script>