Powered by OpenAIRE graph
Found an issue? Give us feedback

MajoranaTopIn

Majorana Fermions in Topological Insulator Platforms
Funder: European CommissionProject code: 741121 Call for proposal: ERC-2016-ADG
Funded under: H2020 | ERC | ERC-ADG Overall Budget: 2,406,250 EURFunder Contribution: 2,406,250 EUR
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
5
3

MajoranaTopIn

Description

Majorana fermions were recently discovered in topological superconductors as exotic quasiparticles having the curious property of being their own antiparticles. They are not only interesting as novel relativistic quasiparticles, but are also useful for realizing fault-tolerant quantum computers. However, currently available platforms to materialize Majorana fermions are limited, and the existing platforms have respective drawbacks for actually building qubits for a scalable quantum computer. Also, various unusual properties are predicted for Majorana fermions, but few have been experimentally addressed. To make a leap in the Majorana-fermion research which is technically highly demanding, one needs to grow state-of-the-art materials and tightly combine them with mesoscopic device research. By performing such an integrated research efforts in the same laboratory, this project aims to explore new platforms for Majorana qubits and to establish new methodologies to address peculiar physics of Majorana fermions. As new platforms, we pursue (i) three-dimensional topological-insulator nanoribbons and (ii) ferromagnetic topological-insulator thin films, both of which will be proximity-coupled to an s-wave superconductor. Each of them allows for conceiving Majorana qubits based on different principles, which will be tested in this project. Also, by developing new methodologies, we will elucidate (i) non-Abelian statistics probed by interferometry and (ii) quantized/universal heat transport phenomena probed by thermal conductance. These works will be complemented by materials growth efforts involving molecular beam epitaxy and detailed characterizations of the local electronic states using scanning tunnelling spectroscopy. If successful, this project will not only contribute to the realization of scalable quantum computers, but also elucidate the non-Abelian statistics, which is a fundamentally new property of particles and is ground breaking in physics.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 5
    download downloads 3
  • 5
    views
    3
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::b9337c76b17489d368ffa9f840c57d7e&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down