Powered by OpenAIRE graph
Found an issue? Give us feedback

ESX-4 T7SS

Structure/function of a prototypic type VII secretion system from a fast-growing pathogenic mycobacteria
Funder: European CommissionProject code: 846476 Call for proposal: H2020-MSCA-IF-2018
Funded under: H2020 | MSCA-IF-EF-ST Overall Budget: 162,806 EURFunder Contribution: 162,806 EUR

ESX-4 T7SS

Description

Mycobacterium abscessus (Mab) is an opportunistic-multidrug-resistant non-tuberculous mycobacteria responsible for multiple clinically-acquired infections both pulmonary and extrapulmonary. Unlike many rapidly growing mycobacteria (RGM), Mab is able to survive and multiply within macrophages, similar to slow growing mycobacteria (SGM) such as M. tuberculosis (Mtb). In Mtb, five T7SS (ESX-1-5) have been identified and shown to be essential for intracellular survival (ESX-1), virulence (ESX-1 and ESX-5) or growth (ESX-3). T7SS are composed of five protein components essential for function: EccB, EccC, EccD, EccE and MycP. Except for a low-resolution structure of the holo ESX-5 complex from the host lab at 13 Å resolution, no structural data on any T7SS have been published to date, rendering structural work timely and eagerly awaited by relevant communities. Deemed inactive due to its lack of one of the established T7SS components EccE4, ESX-4 has been considered an ancestral T7SS form. However, Mab possess a fully intact and functional ESX-4, essential for its intracellular survival, rendering it a highly attractive target for an in-depth characterization. Here, I propose an interdisciplinary project that includes both functional and structural investigation. As the 2 M Dalton-holo-complex crosses the Mab inner membrane, experimental structural work will be challenging and require an integrative modeling approach to combine diverse experimental data sets. Complementary infection biology experiments including microbiology, genetics and cell biology will be carried out by collaborators. With this work, I aim to respond to central questions related to T7SS in general and Mab ESX-4 specifically, such as: what is the mechanism of T7SS-mediated secretion? What makes ESX-4 specific and different from other T7SS? What is the specific role of EccE4 to establish a functionally active ESX4? and What are the substrates and specific mechanism of ESX-4 substrate recognition?

Partners
Data Management Plans
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::b837d9936048faf839720a08da8741b5&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down