Powered by OpenAIRE graph
Found an issue? Give us feedback

CLARIFY

Cancer Long Survivors Artificial Intelligence Follow Up
Funder: European CommissionProject code: 875160 Call for proposal: H2020-SC1-DTH-2019
Funded under: H2020 | RIA Overall Budget: 4,841,960 EURFunder Contribution: 4,841,960 EUR
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
279
226
Description

There were 17 million new cases of cancer diagnosed worldwide in 2018. Survival rates of cancer patients were rather poor until recent decades, when diagnostic techniques have been improved and novel therapeutic options have been developed. It is estimated that more than 50% of adult patients diagnosed with cancer live at least 5 years in the US and Europe. This situation leads to a new challenge: to increase the cancer patients’ post-treatment quality of life and well-being. This proposal aims at identifying cancer survivors from three prevalent types of cancer, including breast, lung and lymphomas. The patient data will be collected from different Spanish hospitals and the selection will be based on ongoing health and supportive care needs of the particular patient types. We will determine the personalised factors that predict poor health status after specific oncological treatments. For this aim, Big Data and Artificial Intelligence techniques will be used to integrate all available patient´s information with publicly available relevant biomedical databases as well as information from wearable devices used after the treatment. To predict patient-specific risk of developing secondary effects and toxicities of their cancer treatments, we will build novel models based on statistical relational learning and explainable AI techniques on top of the integrated knowledge graphs. The models will utilise background knowledge of the associated cancer biology and thus will help clinicians to make evidence-based post-treatment decisions in a way that is not possible at all with any existing approach. In summary, CLARIFY proposes to integrate and analyse large volumes of heterogenous multivariate data to facilitate early discovery of risk factors that may deteriorate a patient condition after the end of oncological treatment. This will effectively help to stratify cancer survivors by risk in order to personalize their follow-up by better assessment of their needs.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 279
    download downloads 226
  • 279
    views
    226
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::85834b94f8657fa0f4f5116a8770ef2b&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down