Powered by OpenAIRE graph
Found an issue? Give us feedback

SUMAC

TrendS and Uncertainties in Mercury (Hg) Atmospheric Chemistry
Funder: European CommissionProject code: 101103544 Call for proposal: HORIZON-MSCA-2022-PF-01
Funded under: HE | HORIZON-AG-UN Funder Contribution: 181,153 EUR
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
12
12
Description

Anthropogenic emissions of the toxic heavy metal mercury (Hg) threaten human health and ecosystems. The elemental form of emitted gaseous mercury, Hg(0), can be transported globally in the atmosphere due to its long lifetime of 4–6 months, but upon oxidation it forms soluble divalent mercury, Hg(II), which is rained out within days. However, there are many uncertainties associated with atmospheric Hg chemistry, leading to uncertain predictions of its fate and ecosystem impacts. Additionally, it is unknown how Hg cycling has been affected by recent, global change-induced trends in atmospheric oxidants (e.g., ozone and halogens). To address these knowledge gaps, the interdisciplinary SUMAC project will train the experienced researcher (ER) to integrate the latest knowledge from laboratory kinetics, computational and isotope chemistry, and field measurements into a global atmospheric Hg model, GEOS-Chem. By applying statistical methods from the field of global sensitivity analysis, the ER will identify the key chemical reaction rates that contribute the most to the uncertainty in the atmospheric Hg lifetime. Using Bayesian inference methods, the ER will develop constraints from field measurements for these reaction rates, establishing a new chemical mechanism for atmospheric Hg models. With the refined Hg chemical mechanism, the ER will conduct historical and future simulations to evaluate temporal trends in the Hg chemical lifetime and resultant impacts on Hg dispersion and deposition. By being the first study to quantify the influence of atmospheric chemistry on observed Hg trends, SUMAC will support the effectiveness evaluation of the Minamata Convention on Mercury, an international treaty aimed at reducing Hg emissions. Aside from the breakthrough research outcomes, SUMAC will strengthen the capacity of Hg modelling within Europe through the ER’s training activities, knowledge transfer to host institutions, open-access model development, and outreach.

Partners
Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 12
    download downloads 12
  • 12
    views
    12
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::e85ef25e1bd0b878822a8f2cafc7b591&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down