Powered by OpenAIRE graph
Found an issue? Give us feedback

CARBCOMN

CARBon-negative COMpression dominant structures for decarbonized and deconstructable CONcrete buildings
Funder: European CommissionProject code: 101161535 Call for proposal: HORIZON-EIC-2023-PATHFINDERCHALLENGES-01
Funded under: HE | HORIZON-EIC Overall Budget: 3,603,460 EURFunder Contribution: 3,603,460 EUR

CARBCOMN

Description

CARBCOMN addresses a disruptive innovation in zero-carbon concrete load-bearing structures (combination of columns, beams, slabs or walls) by setting forth a new digital AEC design paradigm that is fully compatible with concrete that uses CO2 as raw material and is carbon-negative. Digital methodologies are exploited and developed to realise an innovative carbon-neutral construction system implementing structural geometries that are compression dominant, optimise the CO2 sequestration capability and make use of demountable discrete blocks combined with system redundancy. The latter will be assisted by the combined use of funicular shapes and post-tensioning with shape memory alloys. To handle the complex geometries in combination with a carbon-negative concrete-like material, an innovative digital pipeline is developed that incorporates for example computed tomography, topology optimization and 3D construction. Using CO2 sequestration to harden the concrete-like material for widely used load bearing structures will reduce embodied greenhouse gas emissions in an unprecedented way. The material design, incorporating recycled materials and by-products derived from other industrial processes (e.g. slags and ashes) will equally reduce raw material usage. The intrinsic durability properties by introducing a system that is not susceptible to rebar corrosion and is deconstructable, will achieve both long service life and circularity, to further reduce the environmental impact of the built environment. The overall superiority of the proposed system with respect to the current state of practice will be demonstrated through a full life cycle analysis. Throughout the CARBCOMN project, compliance with relevant standards of building operational performance will be established, and designers, architects, engineers will be enabled to use the novel design paradigm for inspiring buildings.

Data Management Plans
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::c422284c21a6e44ce704fb9b95007092&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down