
The Rockley Group UK
The Rockley Group UK
10 Projects, page 1 of 2
assignment_turned_in Project2017 - 2023Partners:The Rockley Group UK, The Rockley Group UK, University of Southampton, [no title available], University of SouthamptonThe Rockley Group UK,The Rockley Group UK,University of Southampton,[no title available],University of SouthamptonFunder: UK Research and Innovation Project Code: EP/R003076/1Funder Contribution: 2,220,210 GBPAccording to the Cisco's 2016 Global Cloud Index, hyperscale data centers will grow from 259 in number at the end of 2015 to 485 by 2020 and will represent 47 percent of all installed data center servers by 2020. This extraordinary growth prediction will exasperate an industry already struggling to cope with the costs and power requirements of existing IT infrastructure technology. Rockley Photonics is developing a highly scalable optical fibre networking and packet switch solution for cloud datacenters. The heart of the solution will be the company's TopangaTM optical fiber interfaced packet switch application-specific integrated circuit (ASIC). With the TopangaTM ASIC, one can network up to hundreds of thousands of servers together in cloud datacenters at a fraction of the current capital expenditure (CAPEX) and operating expenditure (OPEX - mainly power), achieving greatly superior server utilization and lower communication latency required for emerging virtual reality and machine learning applications. Rockley Photonics TopangaTM for the first time in the industry uses silicon photonics chips incorporating wavelength division multiplexing (WDM) integrated with the switch ASIC to directly bring high bandwidths of data on and off the ASIC. These chips use micro-scale silicon photonic opto-electronic elements (e.g. modulators) to perform the electrical-to-opical conversions with new levels of compactness and high densities pitch-matched to the ASICs to reduce electrical connection length almost to zero. This proposed Prosperity Partnership brings together the UK's premier industry and academic partners in the field of Silicon Photonics, Rockley Photonics and The Silicon Photonics Group at the Optoelectronics Research Centre (ORC), University of Southampton. The management team at Rockley have already been involved in 2 Silicon Photonics start-up companies and now Rockley Photonics is pioneering the 3rd generation of this emerging technology. The ORC team have demonstrated numerous world firsts in the field, and are known around the globe as a pioneering team in the field of Silicon Photonics. Together these teams will form a formidable Prosperity Partnership that will work together to transform the way in which data centre architectures handle vast quantities of data by developing novel photonic solutions to the modulation and distribution of optical signals, and the overall switching architectures. We anticipate significant impact from the funding, should we be successful. The Silicon Photonics Group at the University of Southampton are well known internationally for pioneering work in the field since 1989. In 2012 the group moved to Southampton University where the head count has since grown by a factor of x3 to more than 40 researchers in total. Not only do the group have a large number of key collaborators within the Southampton environment, but also play a key role in running and using the clean room complex, putting them in a unique position worldwide in having design, fabrication, prototyping and testing facilities/expertise. The investment of more than £120 Million in the cleanroom complex has recently been enhanced by a £3million EPSRC investment in a photolithography scanning capability which enables fast prototyping, ideal for facilitating disruptive optical device and optical circuit research. Together the combined teams will develop the devices and photonic circuits necessary for future generations of Rockley Photonics products.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0269536fab03a816c3609ec8482146e0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0269536fab03a816c3609ec8482146e0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2020 - 2023Partners:Cardiff University, CARDIFF UNIVERSITY, IQE PLC, The Rockley Group UK, Cardiff University +4 partnersCardiff University,CARDIFF UNIVERSITY,IQE PLC,The Rockley Group UK,Cardiff University,University of Macau,IQE SILICON,IQE (United Kingdom),The Rockley Group UKFunder: UK Research and Innovation Project Code: EP/T01105X/1Funder Contribution: 282,061 GBPThe past few decades have witnessed an explosive growth in the semiconductor material and device technologies and their profound impact in the shaping of modern society. After experiencing the booming development of personal computer (PC) technology in the 1990s and the upsurge of the Internet in the 2000s, we are embracing a new age of the Internet of Things. As the explosive growth of Internet Protocol (IP) traffic is driving data centres to the so-called "Zettabyte Era", today's electrical interconnects quickly became the bottleneck due to ohmic loss and RC delays of copper wires. Optical interconnects promise to break the bottleneck by enabling data in computers moving both across chips and from chip to chip through photons. Photons are electromagnetic waves with very high frequencies. They can travel at the speed of light and they are super-efficient information carriers. The realisation of optical interconnects requires all optical components from passive to active devices to be integrated on the same silicon-on-insulator platform. Despite great success in developing silicon-based light modulation and detection, the lack of an efficient light emitter due to the indirect bandgap properties of silicon continues to pose a major roadblock. In contrast to silicon, most of III-V compound semiconductors have a direct bandgap with excellent photon absorption and emission efficiency. It is widely perceived that integrating III-V semiconductors, the best available materials for light emitters, on silicon could unpin the transition from electrical to optical interconnects. Epitaxial growth of III-V materials in the desired areas on silicon offers a scalable, low-cost and high-throughput scheme to bring optical capabilities to silicon integrated circuits. However, there are several fundamental challenges associated with material incompatibility, including a large mismatch in the lattice constants and thermal expansion coefficients, and the growth of polar materials on non-polar substrates. Conventional III-V/Si epitaxy circumvents these challenges through multiple buffer layers on bulk silicon wafers. However, thick buffers limit process throughput and present a big barrier for efficient light coupling to the underlying silicon waveguides. In this project, an advanced epitaxy process will be developed to enable an III-V on insulator (XOI) structure integrated on silicon wafers. By taking advantage of the crystallographic geography and selective area growth in confined spaces, we aim to achieve dislocation-free micro-sized thin films on insulators without requesting complex buffer designs. Such a buffer-less platform can potentially support intimate integration of III-V compound semiconductors with silicon waveguides and open enormous opportunities in Si photonics. As a proof-of-concept demonstration, micro-disk lasers will be fabricated to validate the optical quality of the III-V structures and highlight its potential for photonics integration.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4b9e7e0af95af906290ab79ab69d1be6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4b9e7e0af95af906290ab79ab69d1be6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2016 - 2022Partners:Hitachi (Japan), Oclaro Technology UK, Defence Science and Technology Laboratory, [no title available], The Rockley Group UK +7 partnersHitachi (Japan),Oclaro Technology UK,Defence Science and Technology Laboratory,[no title available],The Rockley Group UK,The Rockley Group UK,University of Southampton,Oclaro (United Kingdom),University of Southampton,Defence Science & Tech Lab DSTL,Defence Science & Tech Lab DSTL,Hitachi LtdFunder: UK Research and Innovation Project Code: EP/N013247/1Funder Contribution: 1,477,730 GBPThe theme of this platform grant is electronic-photonic convergence. It underpins expertise in integrated photonics platforms such as silicon photonics, mid-IR photonics, non-linear photonics and high speed electronics, all of which make use of a common fabrication platform. The convergence of electronics and photonics underpins a host of technologies ranging from future internet to consumer products, and from biological and chemical sensing to communications. The integration of electronics and photonics is recognised as the only way to manage the massive data demands of the future, and is consequently crucial to the continuation of the digital age. Silicon Photonics is an example of an emerging technology that will bring photonics to mass markets via integration with electronics. Integrated silicon systems are projected to serve a market in excess of $700M by 2024 (Yole Development, 2014), but is reliant on photonics converging with electronics. Furthermore, some aspects of silicon photonics will encompass non-linear photonics in second generation devices for all optical processing in a fully integrated platform. Similarly, related technologies such as SiGe-on-Insulator and Ge-on-Insulator are poised to revolutionise the next generation of communications and integrated sensor technologies, all on an integrated platform with electronics and non-linear photonics. Underpinning a team in these crucial areas of expertise supported by a flexible funding platform will enable us to pioneer work in these technology areas, and to add value to ideas that emerge. The convergence of electronics and photonics will result in complex integrated systems, linked via fabrication technologies. Electronic-photonic integration has yet to be addressed in a meaningful way in silicon based technologies, and this team collectively have the essential skills to do so, at an institution that possesses the key fabrication equipment to facilitate success. Due to the complex nature of fabrication for research, existing RAs are fully utilised, and have little or no additional scope for strategic research. The platform grant will give us the opportunity to dedicate fabrication resource and RA skills to strategic projects, and specific innovation. We will do this by utilising the RAs within the project to deliver work of significant strategic importance to the portfolio of grants held by the group, whilst also developing the research and managerial skills of the RAs by giving them specific management responsibilities whilst being mentored by one of the investigators.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c39ebb1103311933a79bb236bf91fe0e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c39ebb1103311933a79bb236bf91fe0e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2020 - 2024Partners:University of Southampton, British Telecommunications Plc, [no title available], BT, The Rockley Group UK +7 partnersUniversity of Southampton,British Telecommunications Plc,[no title available],BT,The Rockley Group UK,Microsoft Research (United Kingdom),Hewlett-Packard Company Inc,MICROSOFT RESEARCH LIMITED,BT Research,University of Southampton,Hewlett-Packard (United States),The Rockley Group UKFunder: UK Research and Innovation Project Code: EP/T007303/1Funder Contribution: 1,123,970 GBPInternet communications have effected a massive transformational effect in modern societies over the past few decades, affecting all aspects of modern life, from commerce and healthcare through politics to education and entertainment. Optical communication technologies have played a decisive role and remain central to this revolution. Wavelength division multiplexing allows the transmission of hundreds of terabits per second over a single mode fibre and has enabled wavelength routing, where the optical frequency, rather than the physical fibre path, determines the routing of a signal in a network. The relentless growth in communication traffic necessitates an effective use of network resources, and in response, modern optical networks increase in complexity and require dynamic allocation of their resources. The ultimate objective of this project is to enable a next generation reconfigurable add-drop de/muliptlexer that will allow re-allocation of the signal wavelength through all-optical wavelength conversion. In order to achieve this, juNIPeRS will study silicon-rich silicon nitride as a CMOS-compatible optical nonlinear material platform and will exploit its unique characteristics to implement integrated devices with unprecedented nonlinear performance. juNIPeRS will follow a vertical research path, that will include material optimisation and fabrication of photonic integrated systems, device design and optimisation, system integration, and demonstration and testing in a communications environment. Specifically, juNIPeRS will: - Develop low-loss, dispersion engineered nonlinear waveguides that will form the core of wavelength converting systems. - Optimise couplers for efficient coupling of light between these integrated components and fibre optic systems. - Demonstrate integrated wavelength converters and phase-sensitive amplifiers, the operation of which will be independent of the polarisation of the incoming signal. - Implement multi-layered photonic systems integrating both linear (e.g. switches) and nonlinear components (e.g. wavelength converters). With the development of the new technological platform, the ambition of juNIPeRS is to facilitate a shift in the design of flexible optical networks, where practical integrated photonic components will be used for the manipulation of the optical frequencies. The new material platform is expected to have important implications in other areas of nonlinear optics outside communications, and the investigators will take active steps to promote it. juNIPeRS brings together academic groups and key industrial partners who are best placed to critically appraise the commercial relevance of the new technology and guide its development. The project will train a new generation of highly qualified optical engineers and will contribute to the health and sustainability of the UK photonics sector.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ba1f414286b5fe4e5c787264135b2dd6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ba1f414286b5fe4e5c787264135b2dd6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2026Partners:Defence Science and Technology Laboratory, Transense Technologies plc, Defence Science & Tech Lab DSTL, The Rockley Group UK, [no title available] +7 partnersDefence Science and Technology Laboratory,Transense Technologies plc,Defence Science & Tech Lab DSTL,The Rockley Group UK,[no title available],Defence Science & Tech Lab DSTL,The Rockley Group UK,University of Southampton,Atomic Weapons Establishment,University of Southampton,Transense Technologies plc,AWEFunder: UK Research and Innovation Project Code: EP/V054120/1Funder Contribution: 3,141,000 GBPThe twentieth century has witnessed an exceptional technological progress in consumer electronics that has utterly shaped modern societies and economies. This ICT evolution was mainly driven by the invention of the transistor and integrated circuits, with chemistry and materials science playing a pivotal role in manufacturing active devices with distinct and reliable properties that over the past 70 years have been following Moore's scaling trend. The need for continuing advancing the performance of devices and systems is thus driving research efforts in prototyping and demonstrating novel nano-scale concepts at extreme dimensions - towards the single nanometre scale. This is not only important both for commercially available CMOS technologies as well as "beyond-CMOS" technologies that promise to disrupt the current electronics landscape by delivering unprecedented computational at extreme low-power. At the same time, emerging techniques for deep-subwavelength optical imaging based upon AI-enabled analysis of diffracted/scattered light fields are also constrained by current nanoscale precision and accuracy with which training samples can be fabricated. Electron Beam Lithography has so far supported such developments in the deep-submicron regime by directly patterning resists with a focused beam of electrons. A high acceleration voltage can facilitate the writing of fine and more vertical (better defined) lines, minimise proximity issues, achieve a better pattern fidelity and allow for a wider dose optimisation window. Existing electron beam lithography (EBL) systems in the UK operate at voltages up to 100 kV and can in principle reach writing resolutions down to 5nm. This programme aims at procuring the world's highest acceleration voltage EBL system that can be flexible operated from 25 kV to 150 kV for writing efficiently and fast a wide range of feature sizes (sub-5nm) across large areas, sample substrates (up to 8") and resist thicknesses. This new capability will provide a unique platform (first one in the UK and Europe) for innovation via manufacturing a wide-range of beyond-CMOS devices and nanostructures at unprecedented scales. The knowledge gained with this new instrument will not only contribute to an in-depth understanding of nanodevice physics but also advance developments in disruptive ICT concepts across emerging memory, computing, plasmonics, photonics and sensory architectures. Hosting this unique capability within Southampton's nanofabrication suite brings unique opportunities for usage along other state-of-art tools, including an EPSRC funded DUV Stepper/Scanner, that will support industry compatible wafer scale processing that allows mimicking the manufacturing capability of EUV tools (costing in excess of 100M£) and are used for production at industrial foundries for advanced technological nodes (3, 5 and 7 nm). Finally, the tool will support a diverse, inclusive and collaborative research community, fostering interactions between academia and industry, and enabling innovative research projects and directions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::afb2db158940b608274486c385a39ab9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::afb2db158940b608274486c385a39ab9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right