Powered by OpenAIRE graph
Found an issue? Give us feedback

BASF AG (International)

BASF AG (International)

50 Projects, page 1 of 10
  • Funder: UK Research and Innovation Project Code: EP/I014640/1
    Funder Contribution: 767,492 GBP

    Many important questions and challenges in process systems design, operation and control can be typically posed as nonlinear optimization problems. To date, most optimal decision making tools for such problems are mainly based on deterministic mathematical models, where all parameter values in the model are assumed to be known precisely. In practice, however, mathematical models are merely approximate descriptions of the real system, and parameters such as future demands, prices, equipment wearout and process conditions are subject to significant uncertainty. It has been frequently shown that disregarding such uncertainty can lead to severe performance losses, increased costs, and energy/environmental penalties. We propose to develop robust, local and global optimization methods for the efficient solution of such nonlinear optimization problems in the presence of uncertainties. Depending on their nature, uncertainties can be accounted for in a static/proactive or reactive way. Two important industrial applications will be investigated and the developed methods will be applied for the integrated design, optimization and control of process systems under uncertainty.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E016340/1
    Funder Contribution: 3,025,730 GBP

    Functional molecules (such as polymers, surfactants, ionic liquids and solvents) and structured phases (such as crystalline materials, micelles and liquid crystals) are of immense industrial importance in areas ranging from the traditional chemical and petrochemical sectors to the personal care, pharmaceutical, agrochemical and biotechnology sectors. Large strides in our ability to model matter from the molecular to macroscopic scales have been made in recent years, and it is timely to exploit these advances to make more rational design decisions in developing new materials. MOLECULAR SYSTEMS ENGINEERING focuses on the development of methods and tools for the design of better products and processes in applications where molecular interactions play a central role. By MOLECULAR we refer to the development of predictive models that are built upon a fundamental understanding of the behaviour of functional molecules, and which rely on physically meaningful parameters. The resulting models should incorporate the most up-to-date scientific knowledge and be accessible to non-experts. By SYSTEMS we refer to the development of techniques that are generic and can therefore be used to tackle problems in a range of applications. We place particular emphasis on the correct and efficient integration of models across different scales, so that molecular-level models can be used reliably at the larger scale of products and processes. By ENGINEERING we refer to our focus on applications where the key issue is to achieve desired behaviour, be it optimal end-use properties for a product or optimal performance for a manufacturing process. This research programme thus aims at addressing the general grand challenge of finding molecules, or mixtures of molecules, which possess desired properties for their end-use and for processing. A multidisciplinary team of systems engineers and thermodynamicists will develop modelling approaches to address generic problems in predicting the behaviour of matter, and will apply them within computer-aided design tools to solve problems in four important areas of application: the promotion of organic reactions in solvents, polymer design, the design of effective drug crystals, the design of structured materials such as polymer blends, microemulsions (e.g. shampoos) and liquid crystals.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M015173/1
    Funder Contribution: 2,476,880 GBP

    Wearable technologies such as smart glasses have recently caused much excitement in the business and technology spheres. However, these examples use relatively conventional technologies. The real breakthrough in wearable technologies will come when we can manufacture materials and components that are flexible and non-intrusive enough to be integrated into everyday items, such as our clothes. The main challenges to achieving this are the lack of reliability, performance limitations of (opto)electronics on flexible substrates, and the lack of flexible power sources. Much of the necessary device technology exists in some nascent form; our proposal will provide the technological innovation to allow its manufacture in a form compatible with wearable technology. In this project we aim to solve a key technological challenge in wearable technologies, namely that of scalable and cost-effective manufacturing by taking advantage of the following areas of UK technological excellence in components and scale-up technologies: 1) The assembled consortium has an emphasis on inventing and demonstrating the key wearables technologies required on flexible substrates for displays, energy harvesting and sensing. 2) The consortium consists of key researchers in the fields of modeling prediction, metrology, systems integration and design for reliability, all required to complement the device engineering. 3) Importantly, by integrating, right from the word go, the aspect of Roll-to-Roll (R2R) scale-up of manufacturing such flexible technologies, we will create the manufacturing know-how to allow fundamental science to translate into manufacturing. The deposition processes for all wearables face similar challenges such as low material yield, high waste (important for functional films where minimizing waste saves costs substantially) and lack of in-situ process monitoring. Additionally, for our targeted applications, there is currently no scalable cost-effective manufacturing technology. Roll-to-roll processing fulfills this crucial need and our aim will be to enable this scalable manufacturing technology for inexpensive production on flexible substrates, an area very much underexplored in terms of advanced functional materials, but one with huge potential.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L016648/1
    Funder Contribution: 4,659,280 GBP

    The Bristol Centre for Functional Nanomaterials (BCFN) is an EPSRC Centre for Doctoral Training at the forefront of creative graduate training, equipping students to meet global grand challenges. The BCFN focus is to produce the highest quality students capable of designing, measuring and understanding advanced functional materials from their fundamental components, to their real-world applications. This is achieved by breaking down the traditional boundaries of chemistry, physics, biology and engineering, and providing training in a highly creative, adaptive and flexible way. Functional materials, and their characterisation, are vital to the UK economy, and are found in a very diverse range of application sectors including medicine, energy, food and coatings, in a wide range of high value products and are key to fundamental aspects of science. Understanding materials across all length scales and application areas is pivotal to our success - there is therefore a clear need for highly-skilled graduates, and an understanding of materials across all length scales is pivotal to our success. The global market for advanced materials is predicted to be $957bn by 2015, and we are committed to providing cohorts of skilled scientists who can lead innovation in both academia and industry. Our approach is to embed the training program into every aspect of the student experience. This means that the students receive the strongest possible scientific foundations through taught courses and research projects but also develop a fully rounded set of skills, including communication, team working, entrepreneurship and creativity. We have a proven track record of excellence in graduate training and have pioneered innovative tools where the needs of the student are at the core. These have included new online learning tools, a mixture of short- and long-term research projects to promote choice and a wider research experience, and intense involvement with industry which allows students to be exposed to "realworld" problems, ensuring that their creativity is always directed towards finding solutions. We have an extensive expert network of supervisors who deliver the training, whilst collaborating to create new research areas. Our network has more than 100 academics from 15 departments across four faculties at the University of Bristol, aswell as industrial partners. This ensures that the BCFN research and training can adapt to the changing needs of both the UK and global demands for materials. Our centre is located at the nexus of funding council priority areas, and has studentship support (3 p.a.), staff funding, and dedicated space support from the University. From 2014, we will build on our strong foundations and evolve our training. Our links with industry will be strengthened further and via our Bristol-Industry Graduate Engagement (BRIDGE) program we will build sustainable, long-term research platforms to ensure a true benefit to the economy. We will take our successful training model and create a distance learning platform which can be used by partners overseas and in industry through innovative e-learning. We will run summer schools with these partners to expand the training experience for both BCFN students and partners alike. We will continue our extensive public engagement with schools, the general public and policy makers, ensuring that at all stages we communicate with our stakeholders and receive feedback. We have a strong student-focussed management team to ensure quality and delivery. This team, composed of a Director, Principal, co-Principal, Teaching Fellow, Industrial Research Fellow and Manager, and a wider Operational Team drawn from our core departments of Physics, Chemistry and Biology, represent a wide range of research experience from Fellows of the Royal Society to early career fellows, covering a range of strengths in functional materials with proven leadership and research track records.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L016796/1
    Funder Contribution: 4,099,020 GBP

    High Performance Embedded and Distributed Systems (HiPEDS), ranging from implantable smart sensors to secure cloud service providers, offer exciting benefits to society and great opportunities for wealth creation. Although currently UK is the world leader for many technologies underpinning such systems, there is a major threat which comes from the need not only to develop good solutions for sharply focused problems, but also to embed such solutions into complex systems with many diverse aspects, such as power minimisation, performance optimisation, digital and analogue circuitry, security, dependability, analysis and verification. The narrow focus of conventional UK PhD programmes cannot bridge the skills gap that would address this threat to the UK's leadership of HiPEDS. The proposed Centre for Doctoral Training (CDT) aims to train a new generation of leaders with a systems perspective who can transform research and industry involving HiPEDS. The CDT provides a structured and vibrant training programme to train PhD students to gain expertise in a broad range of system issues, to integrate and innovate across multiple layers of the system development stack, to maximise the impact of their work, and to acquire creativity, communication, and entrepreneurial skills. The taught programme comprises a series of modules that combine technical training with group projects addressing team skills and system integration issues. Additional courses and events are designed to cover students' personal development and career needs. Such a comprehensive programme is based on aligning the research-oriented elements of the training programme, an industrial internship, and rigorous doctoral research. Our focus in this CDT is on applying two cross-layer research themes: design and optimisation, and analysis and verification, to three key application areas: healthcare systems, smart cities, and the information society. Healthcare systems cover implantable and wearable sensors and their operation as an on-body system, interactions with hospital and primary care systems and medical personnel, and medical imaging and robotic surgery systems. Smart cities cover infrastructure monitoring and actuation components, including smart utilities and smart grid at unprecedented scales. Information society covers technologies for extracting, processing and distributing information for societal benefits; they include many-core and reconfigurable systems targeting a wide range of applications, from vision-based domestic appliances to public and private cloud systems for finance, social networking, and various web services. Graduates from this CDT will be aware of the challenges faced by industry and their impact. Through their broad and deep training, they will be able to address the disconnect between research prototypes and production environments, evaluate research results in realistic situations, assess design tradeoffs based on both practical constraints and theoretical models, and provide rapid translation of promising ideas into production environments. They will have the appropriate systems perspective as well as the vision and skills to become leaders in their field, capable of world-class research and its exploitation to become a global commercial success.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.