Powered by OpenAIRE graph
Found an issue? Give us feedback

Philips Medical Systems

Philips Medical Systems

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/H046410/1
    Funder Contribution: 6,053,490 GBP

    This programme aims to change the way medical imaging is currently used in applications where quantitative assessment of disease progression or guidance of treatment is required. Imaging technology traditionally sees the reconstructed image as the end goal, but in reality it is a stepping stone to evaluate some aspect of the state of the patient, which we term the target, e.g. the presence, location, extent and characteristics of a particular disease, function of the heart, response to treatment etc. The image is merely an intermediate visualization, for subsequent interpretation and processing either by the human expert or computer based analysis. Our objectives are to extract information which can be used to inform diagnosis and guide therapy directly from the measurements of the imaging device. We propose a new paradigm whereby the extraction of clinically-relevant information drives the entire imaging process. All medical imaging devices measure some physical attribute of the patient's body, such as the X-ray attenuation in CT, changes acoustic impedance in ultrasound, or the mobility of protons in MRI. These physical attributes may be modulated by changes in structure or metabolic function. Medical images from devices such as MR and CT scanners often take 10s of seconds to many minutes to acquire. The unborn child, the very young, the very old or very ill cannot stay still for this time and methods of addressing motion are inefficient and cannot be applied to all types of imaging. Usually triggering and gating strategies are applied, which result in a low acquisition efficiency (since most of the data is rejected) and often fail due to irregular motion. As a result the images are corrupted by significant motion artifact or blurring.Accurate computational modeling of physiology and pathological processes at different spatial scales has shown how careful measurements from imaging devices might allow the clinician or the medical scientist to infer what is happening in health, in specific diseases and during therapy. Unfortunately, making these accurate measurements is very difficult due to the movement artifacts described above. Imaging systems can provide the therapist, interventionist or surgeon with a 3D navigational map showing where therapy should be delivered and measuring how effective it is. Unfortunately image guided interventions in the moving and deforming tissues of the chest and abdomen is very difficult as the images are often corrupted by motion and as the procedure progresses the images generally diverge from the local anatomy that the interventionist or surgeon is treating.Our programme brings together three different groups of people: computer scientists who construct computer models of anatomy, physiology, pharmacological processes and the dynamics of tissue motion; imaging scientists who develop new ways to reconstruct images of the human body; and clinicians working to provide better treatment for their patients. With these three groups working together we will devise new ways to correct for motion artifact, to produce images of optimal quality that are related directly to clinically relevant measures of tissue composition, microscopic structure and metabolism. We will apply these methods to improve understanding of disease progression; guide therapies and assess response to treatment in cancer arising in the lung and liver; to ischaemic heart disease; to the clinical management of the foetus while still in the womb; and to caring for premature babies and young children.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M006328/2
    Funder Contribution: 58,452 GBP

    The term "dementia" is used to describe a syndrome that results, initially, in cognitive function impairment and in many cases, a descending staircase of psychological dysfunction, leading eventually to death. It is a major socio-economic challenge with care costs approaching 1% of global GDP. Several conditions that lead to serious loss of cognitive ability are grouped under this syndrome, including Alzheimer's disease (AD), Vascular Dementia (VaD), Frontotemporal Dementia, etc. A high publicity announcement was made in 2012, by the Prime Minister, emphasising the high priority that should be given to dementia-related research and that funding will more than double in the immediate future, to partially remedy the fact that the overwhelming impact of the syndrome has been over-looked (Guardian, 26/3/12). On Dec 2013, the G8 Summit hosted in London brought together G8 ministers, researchers, pharmaceutical companies, and charities to develop co-ordinated global action on dementia. Dementia has marked adverse effects on the quality of life of tens of millions of people (both patients and carers) and exerts tremendous pressure on healthcare systems, especially when clear trends towards an ageing population, changing environmental influences and contemporary lifestyle choices are considered. Ca. 35M people suffer from dementia worldwide, a figure to quadruple by 2050. Europe and North America share a disproportionally high burden: the effects of ageing are particularly stark for these regions, exacerbating the healthcare provision implications. The Clinical Relevance: Vascular Cognitive Impairment (VCI). VCI defines alterations in cognition attributable to cerebrovascular causes, ranging from subtle or fixed deficits to full-blown dementia. VCI is a wide and accepted term referring to the "syndrome with evidence of clinical stroke or subclinical vascular brain injury and cognitive impairment affecting at least one cognitive domain", with resulting VaD being its most severe form. VaD is responsible for at least 20% of dementias, second only to AD, with a prevalence doubling every 5. 3 years. Several trials examined cholinesterase inhibitors for the treatment of vascular dementia, but the benefits are very modest, except in the individuals with a combination of AD and VaD. Vascular changes result in white matter (WM) damage (leukoaraiosis), which profoundly affect the fidelity of the information transfer underlying brain function and cognitive health8. Cerebral Magnetic Resonance Imaging (MRI) of Diffusion and Perfusion. MRI is a medical imaging technique affording non-invasive investigation of anatomy and tissue function, which is particularly suited to studying cognitive disorders due to its sensitivity and reliability. Our main interest is to characterise vascular and non-vascular tissues using quantitative diffusion and perfusion MR. Our overall aim is to characterise and quantify early differential alterations in brain blood transport and subsequent microstructural tissue damage using one-stop-shop perfusion/diffusion MR GSI incorporating novel MR signal models and optimal MR sequence design based on new human brain histomorphometric data in health and disease.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M006328/1
    Funder Contribution: 1,302,400 GBP

    The term "dementia" is used to describe a syndrome that results, initially, in cognitive function impairment and in many cases, a descending staircase of psychological dysfunction, leading eventually to death. It is a major socio-economic challenge with care costs approaching 1% of global GDP. Several conditions that lead to serious loss of cognitive ability are grouped under this syndrome, including Alzheimer's disease (AD), Vascular Dementia (VaD), Frontotemporal Dementia, etc. A high publicity announcement was made in 2012, by the Prime Minister, emphasising the high priority that should be given to dementia-related research and that funding will more than double in the immediate future, to partially remedy the fact that the overwhelming impact of the syndrome has been over-looked (Guardian, 26/3/12). On Dec 2013, the G8 Summit hosted in London brought together G8 ministers, researchers, pharmaceutical companies, and charities to develop co-ordinated global action on dementia. Dementia has marked adverse effects on the quality of life of tens of millions of people (both patients and carers) and exerts tremendous pressure on healthcare systems, especially when clear trends towards an ageing population, changing environmental influences and contemporary lifestyle choices are considered. Ca. 35M people suffer from dementia worldwide, a figure to quadruple by 2050. Europe and North America share a disproportionally high burden: the effects of ageing are particularly stark for these regions, exacerbating the healthcare provision implications. The Clinical Relevance: Vascular Cognitive Impairment (VCI). VCI defines alterations in cognition attributable to cerebrovascular causes, ranging from subtle or fixed deficits to full-blown dementia. VCI is a wide and accepted term referring to the "syndrome with evidence of clinical stroke or subclinical vascular brain injury and cognitive impairment affecting at least one cognitive domain", with resulting VaD being its most severe form. VaD is responsible for at least 20% of dementias, second only to AD, with a prevalence doubling every 5. 3 years. Several trials examined cholinesterase inhibitors for the treatment of vascular dementia, but the benefits are very modest, except in the individuals with a combination of AD and VaD. Vascular changes result in white matter (WM) damage (leukoaraiosis), which profoundly affect the fidelity of the information transfer underlying brain function and cognitive health8. Cerebral Magnetic Resonance Imaging (MRI) of Diffusion and Perfusion. MRI is a medical imaging technique affording non-invasive investigation of anatomy and tissue function, which is particularly suited to studying cognitive disorders due to its sensitivity and reliability. Our main interest is to characterise vascular and non-vascular tissues using quantitative diffusion and perfusion MR. Our overall aim is to characterise and quantify early differential alterations in brain blood transport and subsequent microstructural tissue damage using one-stop-shop perfusion/diffusion MR GSI incorporating novel MR signal models and optimal MR sequence design based on new human brain histomorphometric data in health and disease.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.