
AMD (Advanced Micro Devices) UK
AMD (Advanced Micro Devices) UK
2 Projects, page 1 of 1
assignment_turned_in Project2024 - 2032Partners:Oxford Wave Research Ltd, Graphcore, Keysight Technologies (United Kingdom), Level E Ltd, Lightspeed studios +15 partnersOxford Wave Research Ltd,Graphcore,Keysight Technologies (United Kingdom),Level E Ltd,Lightspeed studios,Synopsys (UK),QuiX Quantum B.V.,Cisco Systems (United States),3Finery,Codeplay (United Kingdom),The Data Lab,Black Rock,AMD (Advanced Micro Devices) UK,STMicroelectronics,Pharmatics Ltd,Actual Analytics,Huawei Technologies R&D (UK) Ltd,University of Edinburgh,ARM Holdings,NEC Europe Ltd.Funder: UK Research and Innovation Project Code: EP/Y03516X/1Funder Contribution: 8,885,270 GBPMachine Learning (ML) already has a dramatic impact on our daily lives. ML developments in large language models and deep generative models cement that further. The recent explosion in ML, however, is built on the back of improved computer systems able to train and generate ever more powerful models. Systems design fundamentally defines ML performance and capability. This is true for Internet-scale ML and artificial intelligence (AI). Yet, more recently, it is especially evident in distributed, efficient, device-oriented, secure, personalised, privacy-preserving ML. UK strength in this fast developing area is dependent on a skilled R\&D workforce. Systems research and ML research are symbiotic. Current innovation in systems research is driven by the ubiquitous need for efficient and reliable ML. ML research, conversely, is steered by deployment capability and the economic and environmental impact of the resulting systems. Furthermore, systems research increasingly relies on ML methods to automate design, and ML research develops such methods. Major gains are made when the development of ML and systems are co-developed and co-optimized. This is relevant across a broad spectrum of industries: in-car systems, medical devices, mobile phones, sensor networks, condition monitoring systems, high-performance compute and high-frequency trading. Yet PhD training that brings together systems and ML is rare; research training is often siloed in the individual sub-disciplines. Instead, we need researchers trained in both fields and experienced in working across them. Hence: The ML Systems CDT will train a new type of student -- the ML-systems researcher. The ML Systems researcher is critically capable in both fields, and has collaborative research experience across the systems-ML stack. An example concretises this. A company is developing and deploying wearable body monitors. Effective models must be learnt on collected data, but data must be privacy preserving and bandwidth minimized. This is then personalised to each individual, adaptable to circumstance while being battery efficient and not connection dependent. To manage such a project requires knowledge of effective data-efficient ML signal analysis methods, designed and optimized for low-power hardware, itself tailored for the purpose through ML optimization methods. Knowledge of personalisation methods and the payoffs of privacy preserving methods vitally complement this. The societal impact, e.g.\ on those who might be obsessive about their medical state must also be considered, and will impact development. This CDT will train individuals with cross-cutting capability in all these components. Students must have broad understanding of different hardware designs, different platforms, different environments, different models, and different goals beyond their immediate research focus. This makes a cohort-based CDT vital. Standard PhD training in ML systems can result in research focus on a single ML technique and a single system. The CDT treats ML Systems as a holistic discipline. Cohort interaction, and integration gives students real experience across multiple systems, approaches and methodologies. Furthermore students will join together to contribute to a unified toolkit for the ML-Systems stack, and make use of others' contributions to that toolkit. On leaving the CDT, our graduates will understand fully where to focus resources to best improve a company's real-world ML development - whether that be at the ML-algorithm level, the hardware level, the compiler, level or even the legal level. They will be able to evaluate work at every level. We expect our graduates to be the leading team managers in real-world cutting-edge company ML.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f07c1bdae6f1c60c23ad8c6d8b4d0800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f07c1bdae6f1c60c23ad8c6d8b4d0800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2029Partners:Mind Foundry Ltd, Siemens Digital Industries Software - TX, Cadence Design Systems Ltd, Park Systems UK Limited, Keysight Technologies (United States) +21 partnersMind Foundry Ltd,Siemens Digital Industries Software - TX,Cadence Design Systems Ltd,Park Systems UK Limited,Keysight Technologies (United States),BAE Systems (UK),JEOL (United Kingdom),THALES UK LIMITED,Ansys UK Ltd,Synopsys (Northern Europe Ltd.),Samsung,Thermo Fisher Scientific,Broadex Technologies UK Ltd,AMD (Advanced Micro Devices) UK,Arc Instruments,MathWorks (United Kingdom),ST Microelectronics Limited (UK),Leonardo,University of Edinburgh,STFC - LABORATORIES,PragmatIC (United Kingdom),Siemens (Germany) (invalid org),Embecosm (United Kingdom),Intel (United States),Tessolve,Cirrus Logic (UK)Funder: UK Research and Innovation Project Code: EP/Y029763/1Funder Contribution: 10,274,300 GBPArtificial intelligence (AI) is undergoing an era of explosive growth. With increasingly capable AI agents such as chatGPT, AlphaFold, Gato and DALL-E capturing the public imagination, the potential impact of AI on modern society is becoming ever clearer for all to see. APRIL is a project that seeks to bring the benefits of AI to the electronics industry of the UK. Specifically, we aspire developing AI tools for cutting development times for everything from new, fundamental materials for electronic devices to complicated microchip designs and system architectures, leading to faster, cheaper, greener and overall, more power-efficient electronics. Imagine a future where extremely complex and intricate material structures, far more complex than what a human could design alone, are optimised by powerful algorithms (such as an AlphaFold for semiconductor materials). Or consider intelligent machines with domain-specialist knowledge (think of a Gato-like system trained on exactly the right milieu of skills) experimenting day and night with manufacturing techniques to build the perfect electronic components. Or yet what if we had algorithms trained to design circuits by interacting with an engineer in natural language (like a chatGPT with specialist knowledge)? Similar comments could be made about systems that would take care of the most tedious bits of testing and verifying increasingly complex systems such as mobile phone chipsets or aircraft avionics software, or indeed for modelling and simulating electronics (both potentially achievable by using semi-automated AI coders such as Google's "PaLM" model). This is precisely the cocktail of technologies that APRIL seeks to develop. In this future, AI - with its capabilities of finding relevant information, performing simple tasks when instructed to do so and its incredible speed - would operate under the supervision of experienced engineers for assisting them in creating electronics suited to an ever-increasing palette of requirements, from low-power systems to chips manufactured to be recyclable to ultra-secure systems for handling the most sensitive and private data. To achieve this, APRIL brings together a large consortium of universities, industry and government bodies, working together to develop: i) the new technologies of the future, ii) the tools that will make these technologies a reality and very importantly, iii) the people with the necessary skills (for building as well as using such new tools) to ensure that the UK remains a capable and technologically advanced player in the global electronics industry.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a3d99bc38bd64e4a70763015eca22ab5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a3d99bc38bd64e4a70763015eca22ab5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu