Powered by OpenAIRE graph
Found an issue? Give us feedback

University of Rhode Island

University of Rhode Island

13 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: NE/E00511X/1
    Funder Contribution: 324,555 GBP

    On June 15 2006, the World Wildlife Federation (WWF) released a report called 'Killing them Softly', which highlighted concern over the accumulation and toxic effects of persistent organic pollutants present in Arctic wildlife, particularly marine mammals such as the Polar Bear. The Times newspaper ran a full-page article summarising this report and detailed 'legacy' chemicals such as DDT and polychlorinated biphenyls (PCBs), as well as the rise in 'new' chemical contaminants such as brominated flame retardents and perfluorinated surfactants, which are also accumulating in arctic fauna and adding an additional toxic risk. The high levels of these contaminants are making animals like the Polar Bear less capable of surviving the harsh Arctic conditions and dealing with the impacts of climate change. The work in this proposal intends to examine how these chemicals are delivered to surface waters of the Arctic Ocean, and hence the base of the marine foodweb. Persistent organic pollutants reach the Arctic via long-range transport, primarily through the air from source regions in Europe, North America and Asia, but also with surface ocean currents. The cold conditions of the Arctic help to promote the accumulation of these chemicals in snow and surface waters and slows any breakdown and evaporative loss. However, the processes that remove these pollutants from the atmosphere, store them in snow and ice and then transfer them to the Arctic Ocean are poorly understood, and yet these processes may differ depending on the chemcial in question. For example, some chemicals are rather volatile (i.e. they have a tendency to evaporate), so while they can reach the Arctic and be deposited with snowfall they are unlikely to reach the ocean due to ltheir oss back to the atmosphere during the arctic summer. On the other hand, heavier, less volatile chemicals, become strongly bound to snow and particles and can be delivered to seawater during summer melt. Climate change and a warmer world are altering the Arctic and affecting pollutant pathways. For example, the number of ice-leads (large cracks in the sea-ice that give rise to 'lakes' of seawater) are increasing. As a result, the pathways that chemical pollutants take to reach ocean waters are changing and may actually be made shorter, posing an even greater threat to marine wildlife. During ice-free periods, the ocean surface water is in contact with the atmosphere (rather than capped with sea-ice) and airborne pollutants can dissolve directly into cold surface waters. Encouragingly, there is evidence that some of the 'legacy' pollutants are declining in the arctic atmosphere, but many 'modern' chemicals are actually increasing in arctic biota and work is required to measure their input and understand their behaviour in this unusual environment. For example, in sunlit surface snow following polar sunrise (24 h daylight), some of these compounds can degrade by absorbing the sunlight, and in some cases, this can give rise to more stable compounds that subsequently enter the foodchain. Therefore, the quantity of chemical pollutant that is deposited with snowfall and the chemical's fate during snowmelt are important processes to address, especially to understand the loading and impact of these pollutants on the marine ecosystem. This project aims to understand these processes, and to understand which type of pollutants and their quantities pose the greatest threat to wildlife.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/P006280/2
    Funder Contribution: 505,664 GBP

    Copepod species of the genus Calanus (Calanus hereafter) are rice grain-sized crustaceans, distant relatives of crabs and lobsters, that occur throughout the Arctic Ocean consuming enormous quantities of microscopic algae (phytoplankton). These tiny animals represent the primary food source for many Arctic fish, seabirds and whales. During early spring they gorge on extensive seasonal blooms of diatoms, fat-rich phytoplankton that proliferate both beneath the sea ice and in the open ocean. This allows Calanus to rapidly obtain sufficient fat to survive during the many months of food scarcity during the Arctic winter. Diatoms also produce one of the main marine omega-3 polyunsaturated fatty acids that Calanus require to successfully survive and reproduce in the frozen Arctic waters. Calanus seasonally migrate into deeper waters to save energy and reduce their losses to predation in an overwintering process called diapause that is fuelled entirely by carbon-rich fat (lipids). This vertical 'lipid pump' transfers vast quantities of carbon into the ocean's interior and ultimately represents the draw-down of atmospheric carbon dioxide (CO2), an important process within the global carbon cycle. Continued global warming throughout the 21st century is expected to exert a strong influence on the timing, magnitude and spatial distribution of diatom productivity in the Arctic Ocean. Little is known about how Calanus will respond to these changes, making it difficult to understand how the wider Arctic ecosystem and its biogeochemistry will be affected by climate change. The overarching goal of this proposal is to develop a predictive understanding of how Calanus in the Arctic will be affected by future climate change. We will achieve this goal through five main areas of research: We will synthesise past datasets of Calanus in the Arctic alongside satellite-derived data on primary production. This undertaking will examine whether smaller, more temperate species have been increasingly colonising of Arctic. Furthermore, it will consider how the timing of life-cycle events may have changed over past decades and between different Arctic regions. The resulting data will be used to validate modelling efforts. We will conduct field based experiments to examine how climate-driven changes in the quantity and omega-3 content of phytoplankton will affect crucial features of the Calanus life-cycle, including reproduction and lipid storage for diapause. Cutting-edge techniques will investigate how and why Calanus use stored fats to reproduce in the absence of food. The new understanding gained will be used to produce numerical models of Calanus' life cycle for future forecasting. The research programme will develop life-cycle models of Calanus and simulate present day distribution patterns, the timing of life-cycle events, and the quantities of stored lipid (body condition), over large areas of the Arctic. These projections will be compared to historical data. We will investigate how the omega-3 fatty acid content of Calanus is affected by the food environment and in turn dictates patterns of their diapause- and reproductive success. Reproductive strategies differ between the different species of Calanus and this approach provides a powerful means by which to predict how each species will be impacted, allowing us to identify the winners and losers under various scenarios of future environmental changes. The project synthesis will draw upon previous all elements of the proposal to generate new numerical models of Calanus and how the food environment influences their reproductive strategy and hence capacity for survival in a changing Arctic Ocean. This will allow us to explore how the productivity and biogeochemistry of the Arctic Ocean will change in the future. These models will be interfaced with the UK's Earth System Model that directly feeds into international efforts to understand global feedbacks to climate change.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/M00788X/1
    Funder Contribution: 52,250 GBP

    Plate tectonics is a fundamental theory for explaining earthquakes, volcanoes, crustal deformation and therefore the motion at the Earth's surface. However very little is known about how destructive plate boundaries initiate, evolve and end. This is central to plate tectonics, as it is thought that the dominant driving force of plate motions is the gravitational pull of subducting plates. In the Solomon Islands and Papua New Guinea, the Pacific and Australian plates are converging. In the north one subduction zone is nearing the end of its life cycle as anomalously buoyant oceanic plate is stalling subduction. To the south in the San Cristobal Trench, a new subduction zone has initiated in response to continued convergence of the Pacific and Australian plates, making this the perfect place to understand subduction initiation and cessation. In this urgency proposal we will deploy seismometers for 1 year to record aftershocks from sequence of 4 major earthquakes with magnitudes between 7.1-7.6. These recordings and other recordings of earthquakes from around the globe will allow us to delineate with high accuracy the plate interfaces of the new and old subducting slabs and image the slab structures at depth. The structure of the old and new subduction zones will illuminate the processes occurring at depth which are shifting the force balance in the region to reverse the sense of subduction. The proposed experiment will be enhanced by concurrent studies scheduled to be deployed in Fall of 2014, which includes a multimillion pound ocean bottom seismic deployment by colleagues in Japan. The combined array will allow us to image the Pacific plate which is stalling the subduction, allowing us to investigate what conditions are necessary for a plate to halt the descent of the slab into the mantle. Thus we will be able to understand how subduction stops and starts.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/P006280/1
    Funder Contribution: 948,354 GBP

    Copepod species of the genus Calanus (Calanus hereafter) are rice grain-sized crustaceans, distant relatives of crabs and lobsters, that occur throughout the Arctic Ocean consuming enormous quantities of microscopic algae (phytoplankton). These tiny animals represent the primary food source for many Arctic fish, seabirds and whales. During early spring they gorge on extensive seasonal blooms of diatoms, fat-rich phytoplankton that proliferate both beneath the sea ice and in the open ocean. This allows Calanus to rapidly obtain sufficient fat to survive during the many months of food scarcity during the Arctic winter. Diatoms also produce one of the main marine omega-3 polyunsaturated fatty acids that Calanus require to successfully survive and reproduce in the frozen Arctic waters. Calanus seasonally migrate into deeper waters to save energy and reduce their losses to predation in an overwintering process called diapause that is fuelled entirely by carbon-rich fat (lipids). This vertical 'lipid pump' transfers vast quantities of carbon into the ocean's interior and ultimately represents the draw-down of atmospheric carbon dioxide (CO2), an important process within the global carbon cycle. Continued global warming throughout the 21st century is expected to exert a strong influence on the timing, magnitude and spatial distribution of diatom productivity in the Arctic Ocean. Little is known about how Calanus will respond to these changes, making it difficult to understand how the wider Arctic ecosystem and its biogeochemistry will be affected by climate change. The overarching goal of this proposal is to develop a predictive understanding of how Calanus in the Arctic will be affected by future climate change. We will achieve this goal through five main areas of research: We will synthesise past datasets of Calanus in the Arctic alongside satellite-derived data on primary production. This undertaking will examine whether smaller, more temperate species have been increasingly colonising of Arctic. Furthermore, it will consider how the timing of life-cycle events may have changed over past decades and between different Arctic regions. The resulting data will be used to validate modelling efforts. We will conduct field based experiments to examine how climate-driven changes in the quantity and omega-3 content of phytoplankton will affect crucial features of the Calanus life-cycle, including reproduction and lipid storage for diapause. Cutting-edge techniques will investigate how and why Calanus use stored fats to reproduce in the absence of food. The new understanding gained will be used to produce numerical models of Calanus' life cycle for future forecasting. The research programme will develop life-cycle models of Calanus and simulate present day distribution patterns, the timing of life-cycle events, and the quantities of stored lipid (body condition), over large areas of the Arctic. These projections will be compared to historical data. We will investigate how the omega-3 fatty acid content of Calanus is affected by the food environment and in turn dictates patterns of their diapause- and reproductive success. Reproductive strategies differ between the different species of Calanus and this approach provides a powerful means by which to predict how each species will be impacted, allowing us to identify the winners and losers under various scenarios of future environmental changes. The project synthesis will draw upon previous all elements of the proposal to generate new numerical models of Calanus and how the food environment influences their reproductive strategy and hence capacity for survival in a changing Arctic Ocean. This will allow us to explore how the productivity and biogeochemistry of the Arctic Ocean will change in the future. These models will be interfaced with the UK's Earth System Model that directly feeds into international efforts to understand global feedbacks to climate change.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/P006302/1
    Funder Contribution: 2,061,270 GBP

    Arctic PRIZE will address the core objective of the Changing Arctic Ocean Program by seeking to understand and predict how change in sea ice and ocean properties will affect the large-scale ecosystem structure of the Arctic Ocean. We will investigate the seasonally and spatially varying relationship between sea ice, water column structure, light, nutrients and productivity and the roles they play in structuring energy transfer to pelagic zooplankton and benthic megafauna. We focus on the seasonal ice zone (SIZ) of the Barents Sea - a highly productive region that is undergoing considerable change in its sea ice distribution - and target the critically important but under-sampled seasonal transition from winter into the post-bloom summer period. Of critical importance is the need to develop the predictive tools necessary to assess how the Arctic ecosystems will respond to a reducing sea ice cover. This will be achieved through a combined experimental/modelling programme. The project is embedded within international Arctic networks based in Norway and Canada and coordinated with ongoing US projects in the Pacific Arctic. Through these international research networks our proposal will have a legacy of cooperation far beyond the lifetime of the funding. The project comprises five integrated work packages. WP1 Physical Parameters: We will measure properties of the water column (temperature, salinity, turbulent fluxes, light, fluorometry) in both open water and under sea ice by deploying animal-borne tags on seals which preferentially inhabit the marginal ice zone (MIZ). We will use ocean gliders to patrol the water around the MIZ and track it as the ice retreats northwards in summer. Measurements of underwater light fields will support development of improved regional remote sensing algorithms to extend the spatial and temporal context of the proposal beyond the immediate deployment period. WP2 Nutrient Dynamics: We will undertake an extensive program of measuring inorganic and organic nutrients, their concentrations, isotopic signatures and vertical fluxes to understand the role of vertical mixing and advection (WP1) in regulating nutrient supply to PP in the surface ocean. WP3 Phytoplankton Production: We will investigate nutrient supply (WP2) and light availability (WP1) linked to sea ice affect the magnitude, timing, and composition of phytoplankton production, and the role of seasonal physiological plasticity. Through new numerical parameterisations - cross-tuned and validated using a rich array of observations - we will develop predictive skill related to biological production and its fate; resolve longstanding questions about the competing effects of increased light and wind mixing associated with sea ice loss; and therefore contribute to the international effort to project the functioning of Pan-Arctic ecosystems. WP4 Zooplankton: Zooplankton undergo vertical migrations to graze on PP at the surface. We will use acoustic instruments on moorings and AUVs, with nets and video profiles to measure the composition and behaviours of pelagic organisms in relation in light and mixing (WP1) and phytoplankton production (WP3) over the seasonal cycle of sea ice cover. The behaviours identified will be used to improve models that capture the life-history and behavioural traits of Arctic zooplankton. These models can then be used to investigate how feeding strategies of key Arctic zooplankton species may be modified during an era of reducing sea ice cover. WP5 Benthic Community: We will use an AUV equipped with camera system to acquire imagery of the large seabed-dwelling organisms to investigate how changes in sea ice duration (WP1), timing of PP (WP3) and bentho-pelagic coupling (WP4) can modify the spatial variation in benthic community composition. We will also conduct time series-studies in an Arctic fjord using a photolander system to record the seasonally varying community response to pulses of organic matter.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.