Powered by OpenAIRE graph
Found an issue? Give us feedback

Johnson Matthey plc

Johnson Matthey plc

227 Projects, page 1 of 46
  • Funder: UK Research and Innovation Project Code: EP/R020477/1
    Funder Contribution: 369,668 GBP

    Catalysis underpins the £3,500B/year global chemical industry, enabling new routes to synthesising new antibiotics, removing air pollution from the air we breathe, or turning industrial waste into useful products such as plastics. In short, without catalysis, many of the products, drugs, fuels and materials we take for granted would simply not exist. Unfortunately, the design of new catalysts with targeted properties remains an enormous challenge to industry and academia. The key reason is complexity; contemporary heterogeneous and nanoparticle catalysts can exhibit a mind-boggling range of reaction sites and pathways, and catalyst activity can depend (often in an ill-defined manner) on a wide range of features such as structure, composition, support interactions, temperature, pressure, reactant phase constituents, and by-product poisoning. This enormous chemical complexity is a direct barrier to the traditional trial-and-error synthetic approaches to catalyst design used the world over. But, what if we could teach computers to automatically design new, better, catalytic species instead? This would have a transformative impact on catalysis research, both in academia and industry; using computers to accurately predict the optimal catalyst for a reaction would cut down time wasted in trial-and-error synthesis, accelerate catalyst discovery and improve sustainability. However, automated computational design of catalysts has proven elusive to date; again, the same issue of chemical complexity which dogs experimental catalyst design similarly hinders computational methods. This project aims to change this situation, pushing us towards development of a "black box" strategy for computational catalyst design. Specifically, we will begin to address this challenge using path-constrained molecular dynamics (PCMD), a new computational approach developed recently by the PI. PCMD is a connectivity-driven sampling strategy which enables rapid generation of reaction paths connecting large numbers of different chemical species; combined with quantum-chemical calculations of reaction rates and kinetic modelling, PCMD underpins a hierarchical strategy which can predict trends in rate laws, selectivities and product yields arising as a result of changes to catalyst features. To the best of our knowledge, PCMD was the first automated "black box" strategy shown capable of predicting the emergent mechanism and rate law of complex catalytic transformations such as alkene hydroformylation. In the first industrial application of PCMD, we will seek to generate new insights into the reactive chemistry of nanoparticle and heterogeneous catalytic systems for exhaust emissions control. In collaboration with Johnson Matthey, a world-leader in emissions control technologies, we will use PCMD to develop a 'roadmap' of reaction mechanisms, thermodynamics and kinetics of key exhaust gas reactions on nanoparticle and heterogeneous catalysts, specifically carbon monoxide oxidation and nitrogen oxide reduction on metallic nanoparticles and in Cu-promoted zeolites. In addition, building new collaborations with Warwick Data Science Institute and The Alan Turing Institute, we will apply 'big data' statistical analyses of the (potentially enormous) reaction-path datasets generation by PCMD; this leads to the new concept of reaction-path data mining (RDM), which will transform reaction-path datasets into tangible insights and descriptors of catalyst function. Overall, our PCMD/RDM strategy represents a new direction for computational catalysis; by dramatically accelerating the development and application of this strategy, this project will be a critical milestone towards our ultimate long-term goal, namely the "black box" computational design of new catalysts, molecular and other functional chemical systems.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L015749/1
    Funder Contribution: 4,486,480 GBP

    The CDT proposal 'Fuel Cells and their Fuels - Clean Power for the 21st Century' is a focused and structured programme to train >52 students within 9 years in basic principles of the subject and guide them in conducting their PhD theses. This initiative answers the need for developing the human resources well before the demand for trained and experienced engineering and scientific staff begins to strongly increase towards the end of this decade. Market introduction of fuel cell products is expected from 2015 and the requirement for effort in developing robust and cost effective products will grow in parallel with market entry. The consortium consists of the Universities of Birmingham (lead), Nottingham, Loughborough, Imperial College and University College of London. Ulster University is added as a partner in developing teaching modules. The six Centre directors and the 60+ supervisor group have an excellent background of scientific and teaching expertise and are well established in national and international projects and Fuel Cell, Hydrogen and other fuel processing research and development. The Centre programme consists of seven compulsory taught modules worth 70 credit points, covering the four basic introduction modules to Fuel Cell and Hydrogen technologies and one on Safety issues, plus two business-oriented modules which were designed according to suggestions from industry partners. Further - optional - modules worth 50 credits cover the more specialised aspects of Fuel Cell and fuel processing technologies, but also include socio-economic topics and further modules on business skills that are invaluable in preparing students for their careers in industry. The programme covers the following topics out of which the individual students will select their area of specialisation: - electrochemistry, modelling, catalysis; - materials and components for low temperature fuel cells (PEFC, 80 and 120 -130 degC), and for high temperature fuel cells (SOFC) operating at 500 to 800 degC; - design, components, optimisation and control for low and high temperature fuel cell systems; including direct use of hydrocarbons in fuel cells, fuel processing and handling of fuel impurities; integration of hydrogen systems including hybrid fuel-cell-battery and gas turbine systems; optimisation, control design and modelling; integration of renewable energies into energy systems using hydrogen as a stabilising vector; - hydrogen production from fossil fuels and carbon-neutral feedstock, biological processes, and by photochemistry; hydrogen storage, and purification; development of low and high temperature electrolysers; - analysis of degradation phenomena at various scales (nano-scale in functional layers up to systems level), including the development of accelerated testing procedures; - socio-economic and cross-cutting issues: public health, public acceptance, economics, market introduction; system studies on the benefits of FCH technologies to national and international energy supply. The training programme can build on the vast investments made by the participating universities in the past and facilitated by EPSRC, EU, industry and private funds. The laboratory infrastructure is up to date and fully enables the work of the student cohort. Industry funding is used to complement the EPSRC funding and add studentships on top of the envisaged 52 placements. The Centre will emphasise the importance of networking and exchange of information across the scientific and engineering field and thus interacts strongly with the EPSRC-SUPERGEN Hub in Fuel Cells and Hydrogen, thus integrating the other UK universities active in this research area, and also encourage exchanges with other European and international training initiatives. The modules will be accessible to professionals from the interacting industry in order to foster exchange of students with their peers in industry.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P034497/1
    Funder Contribution: 627,696 GBP

    This is an extension of the original Fellowship "Spectroscopy-driven design of an efficient photocatalyst for CO2 reduction" There is sufficient solar energy incident on the UK to provide for all of our energy needs. However the insolation level varies hugely both within a day and on a seasonal level. For any energy technology to be viable it is essential that it is reliable. A route to overcoming the intermittency of supply issue is to use the solar energy to drive the production of a chemical fuel which can be stored and transported to be available when and where it is needed. Sustainable carbon-based solar fuels and feedstocks (e.g. CH4, CH3OH, CO) can be produced by the coupling of light driven water oxidation to the reduction of CO2. This is an exciting prospect but to realise the goal of low carbon-intensity fuel economy breakthroughs are required for both fuel generation and utilisation systems. Current materials for CO2 reduction and water oxidation do not achieve the required level of efficiency and stability at a viable cost. Similarly the most promising clean technologies for electricity generation on demand from carbon fuels, fuel cells, often suffer from relatively low efficiencies and intolerances to impurities in the fuel feed. The original fellowship has been highly successful in delivering new low-cost catalysts that can either be driven directly by sunlight (photocatalysts) or indirectly using electrical energy (which could in principle come from a PV panel) to reduce CO2 to CO, an important liquid fuel precursor. Part of the original fellowship developed new capabilities within the UK for a highly sensitive surface sensitive spectroscopy, IR-Vis Sum Frequency Generation Spectroscopy. This experiment has been used to identify with an incredible level of detail the mechanisms of catalysts at surfaces. These, and our wider spectroscopic studies, have been critical in guiding our own catalyst design programme. But the need for mechanistic insights extends beyond our own synthetic programme. A lack of understanding of the mechanisms of catalysis occurring on the surface of electrodes and photoelectrodes is a limiting factor for the entire field preventing the rational development of new materials. Therefore our spectroscopy driven programme will be expanded to address both the crucial reactions of fuel generation (water oxidation and CO2 reduction) as well as to fuel utilisation chemistry, through the study of state of the art metal-oxide fuel cells. The project is ambitious, aiming not just to provide the first identification of all key intermediates during water oxidation on the most commonly studied photoelectrode (hematite), but also to explore how secondary interactions with water and electrolyte salts control the activity. A similar level of mechanistic detail is also sought from leading CO2 reduction catalysts and fuel cell electrodes. This level of mechanistic detail that we aim to deliver could be transformative to our own, collaborators and the wider communities programmes of material development. The delivery of scalable, efficient materials for solar fuels production and utilisation is a challenging goal but the potential impact is enormous. An improved understanding of surface mechanisms on current materials would represent an important step towards this ambition.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/T012595/1
    Funder Contribution: 5,813,730 GBP

    The ultimate ambition of the proposed research programme is reduced environmental impact of aviation and power generating gas turbine engines. Serious emissions reduction can only come from better understanding and modelling of the combustion and emissions generation processes and the roles of different fuels. Several disruptive chemical and particulate species measurement methods will be developed for detailed combustion zone and exhaust characterisation. These transformational new measurement capabilities will be applied to establishing, for the first, time the spatial and temporal evolution of combustion species and unwanted emissions within the engines. Such measurements will inform new understanding of the combustion and emissions generation processes and enable new technical strategies to ultimately deliver improved engine and fuel technologies for reduced emissions.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/T027584/1
    Funder Contribution: 100,775 GBP

    Adopting the Committee on Climate Change's recommendation to net zero emissions by 2050 demonstrates a clear commitment to leadership in the face of climate emergency. If this is to be achieved, decarbonising the industrial sector represents a critical challenge. However, at present, decarbonisation solutions are not economically competitive. It is critical to the UK's international competitiveness that this is underpinned by implementation of world-leading innovation, and therefore, ensuring research and innovation communities work together for timely industrial implementation. This project focuses on engaging academia, industry, policymakers and other stakeholders to develop an interdisciplinary consortium and subsequent proposal for the Industrial Decarbonisation Research and Innovation Centre (IDRIC). I will facilitate collaboration between researchers to foster co-creation of new interdisciplinary research and innovation programmes. The transformative innovation proposed here will be developed to address head on complex social and environmental challenges and contribute to low-cost transitions to new socio-technical systems. The Centre's agenda will be shaped initially by consultations, as well as network analysis, mapping and market analysis. Collaborative events and virtual environments will develop the co-creation of the cross-cutting challenges. I will embed EDI principles in the design of the Centre's engagement strategy.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.