
Parliamentary Office of Science and Tech
Parliamentary Office of Science and Tech
2 Projects, page 1 of 1
assignment_turned_in Project2012 - 2016Partners:Parliamentary Office of Science and Technology, Navetas Energy Management, ScienceScope (United Kingdom), University of Bath, Low Carbon South West +15 partnersParliamentary Office of Science and Technology,Navetas Energy Management,ScienceScope (United Kingdom),University of Bath,Low Carbon South West,Building Research Establishment,ScienceScope,ScienceScope,WESSEX WATER,Building Research Establishment Ltd BRE,University of Bath,Low Carbon South West,Exeter City Council,YTL (United Kingdom),Exeter City Council,BURO HAPPOLD LIMITED,Parliamentary Office of Science and Tech,BuroHappold (United Kingdom),Buro Happold Limited,Navetas Energy ManagementFunder: UK Research and Innovation Project Code: EP/K002724/1Funder Contribution: 1,511,970 GBPThe UK is committed to an 80% reduction in human-created greenhouse gas emissions. As well as financial incentives, carbon reduction will require an increase in "energy literacy", i.e. it will require members of the public to better understand the energy, carbon and financial implications of their behaviours and habits. The ENLITEN project aims to reduce carbon emissions from energy use within buildings by understanding and influencing occupants' habits and behaviours around energy use. Significantly reducing energy use within buildings through internal physical controls, such as automatically closing windows, is difficult economically. For example, equipping windows with sensors and motors would cost in the region of £100 per window. Reducing energy use within buildings through external policy controls, such as enforcing times when appliances can and cannot be run, is difficult socially and politically. For example, when California tried to impose a state-wide reduction of 1F in air-conditioning temperature settings, there was public outrage and resistance. Hence, an approach that has more chance - economically, socially and politically - of achieving significant energy reductions is to persuade building occupants to change their energy consuming behaviours. There have been many studies of the effect on energy demand of providing building occupants with information on their energy use, founded on the hope that such information will encourage them to reduce their use. The results vary widely, suggesting anything from 0% to 20% reductions. Where reductions are achieved through occupants' behavioural changes, they are often not sustained in the longer term. To achieve significant sustained reductions in energy use by building occupants, we need to avoid simply presenting more information - an approach that has failed in other domains - and focus on providing information that has an effect which lasts beyond any temporary interventions or campaigns. This may be achieved by encouraging changes to sustainable behaviours that are sustained in the longer term, maximising the savings by each individual while minimising the burden of behavioural change required, and maximising the number of individuals making changes. In order to achieve these goals, we will specifically target long term sustained effects by focusing on changes to the habitual behaviours of building occupants and not just short-term responses to interventions. We will develop an innovative smart system that provides information, recommendations and rewards personalised to each household and associated with novel behaviour-driven energy tariffs. We will maximise accessibility and potential uptake of the system by making the equipment cheap, easily deployable and minimally disruptive to the building fabric. The system will be based on a whole building energy model that, uniquely, integrates a thermal model of the building, a model of occupants' habits and requirements and a disaggregated model of energy use in the building. We will use data from a minimal sensor set to develop a unique auto-generated thermal model of the building, and a disaggregated model of energy use. We will use a range of automated and human data collection and analyses to develop an understanding and model of occupants' energy- related attitudes, behaviours and habits. We will bring these models together to inform an interactive in-building tool to help occupants identify and break poor energy habits, form better ones and reduce energy demand and carbon emissions. While fostering changes in the habits of the occupants, we will relate these changes to the broader social and economic context, examining the trade-offs between the value and costs of behavioural change, quantified in terms of reductions in energy cost and carbon footprint for individuals and the energy supply chain. This analysis will allow us to develop novel tariff-based incentives that reward desired behavioural changes.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0092453d18237a0c5084e7a9f2fdaa47&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0092453d18237a0c5084e7a9f2fdaa47&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2018 - 2019Partners:UCL, Transmission Investment, UK Government, Parliamentary Office of Science and Tech, Welsh Government +22 partnersUCL,Transmission Investment,UK Government,Parliamentary Office of Science and Tech,Welsh Government,Scottish Government,Scottish Power,Scottish Government,Government of the United Kingdom,Parliamentary Office of Science and Technology,Transmission Investment,National Infrastructure Commission,Welsh Government,National Grid PLC,WELSH GOVERNMENT,Scottish Power (United Kingdom),UK ATOMIC ENERGY AUTHORITY,National Grid Ventures,Scottish Power (United Kingdom),Utility Regulator for Northern Ireland,Office of Gas and Electricity Markets,Utility Regulator for Northern Ireland,National Infrastructure Commission,SCOTTISH GOVERNMENT,Ofgem,National Grid Ventures,National Grid (United Kingdom)Funder: UK Research and Innovation Project Code: EP/R021333/1Funder Contribution: 673,171 GBPInvesting in new European interconnection capacity is one strategy to integrate renewables and nuclear power stations in the electricity systems of GB and Ireland, by maximising their value through exports and meeting demand peaks through imports. This project aims to assess the value of UK interconnectors to the EU-27 and Norway, examining both the GB and the Irish Single Electricity markets, by investigating five hypotheses: 1. Expanding GB-linked interconnectors would reduce the cost of electricity for both the UK and the EU-27. 2. The operational value of interconnectors will be affected by post-Brexit market relationships (e.g. the GB relationship with the European Energy Union and the Irish Single Electricity market). 3. Balancing markets could be an important future source of revenue for interconnectors. 4. Previous interconnection modelling studies have misinterpreted spurious correlations caused by continent-wide increases in renewables and other system evolutions. 5. The optimal level of investment in GB and I-SEM interconnectors, and between Northern Ireland and the Republic of Ireland, in terms of both security and cost, will be affected by the outcome of Brexit negotiations. The ETM-UCL European energy system model and the ANTARES European electricity dispatch model are being used to assess the potential benefits of existing and new interconnection between the UK and the EU-27 and Norway, for a range of post-Brexit policy environments. The impact of interconnectors and renewables on electricity system stability is being assessed. The GCDCN model, adapted from neuroscience, is being developed to identify causal relationships between interconnection investments and price variations across UK and EU-27 markets. This provides a foundation for improving regulatory models and investment business case analyses.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a3d4234ad08c551fdd0c9cc2f4f004a3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a3d4234ad08c551fdd0c9cc2f4f004a3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu