
SECOBRA Research
SECOBRA Research
5 Projects, page 1 of 1
assignment_turned_in Project2017 - 2022Partners:Limagrain (United Kingdom), LVH UK, SECOBRA Research, RAGT Seeds (United Kingdom), RAGT Seeds Ltd +7 partnersLimagrain (United Kingdom),LVH UK,SECOBRA Research,RAGT Seeds (United Kingdom),RAGT Seeds Ltd,Agriculture and Horticulture Development Board,AHDB,KWS UK Ltd,KWS (United Kingdom),SECOBRA Research,NTU,University of NottinghamFunder: UK Research and Innovation Project Code: BB/R50631X/1Funder Contribution: 103,239 GBPDoctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::550f875617d5c76755ac16cc6619f001&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::550f875617d5c76755ac16cc6619f001&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euassignment_turned_in Project2016 - 2022Partners:University of Nottingham, RAGT Seeds Ltd, RAGT Seeds (United Kingdom), Limagrain (United Kingdom), LVH UK +8 partnersUniversity of Nottingham,RAGT Seeds Ltd,RAGT Seeds (United Kingdom),Limagrain (United Kingdom),LVH UK,SECOBRA Research,Agriculture and Horticulture Development Board,KWS (United Kingdom),AHDB-HGCA,AHDB-HGCA,SECOBRA Research,NTU,KWS UK LtdFunder: UK Research and Innovation Project Code: BB/P002080/1Funder Contribution: 366,541 GBPControl of fertility and successful reproduction is key to grain set and thus crop yield in cereals. Self-pollinating crops tend to have lower yield capability than hybrids generated by intercrossing between elite lines. This "Hybrid Vigour" has been shown to increase yield, but also abiotic and biotic stress resistance. Hybrid crops thus provide opportunities to increase yield and productivity in a sustainable manner. However, the challenge for hybrid production is the need to avoid the natural tendency for many crops to self-fertilise prior to outcrossing, whilst ensuring effective cross-pollination for hybrid seed production. Mechanisms that control fertility in a reversible manner are critical to deliver such systems and this is a key goal for wheat breeding, since major yield enhancements are possible from hybrid wheat. Hybrid seed production also relies upon effective males to pollinate the female lines, therefore traits for optimal pollen production, viability and release are also of major importance. Wheat pollen development is particularly sensitive to environmental damage, with rapid reductions in viability post anthesis, combined with general sensitivity to abiotic stress (e.g. high and low temperature) during development. Reductions in fertility due to environmental stress are often seen in wheat crops and these can have major impacts on yield. Reproductive resilience to variable environmental conditions and abiotic stress is therefore critical to sustainable yields. This can only be delivered by detailed knowledge of pollen development and systems to regulate fertility. Deep understanding of cereal reproduction is therefore key to the development of wheat hybrid breeding systems. This proposal will address these issues by providing greater understanding of pollen development in cereals towards developing switchable systems for the control of wheat fertility, but also by identifying traits for enhanced pollen production and viability, particularly under environmental stress, which are critical for ensuring successful pollination in breeding programmes. By investigating the mechanisms behind these traits and by generating tools for breeding and selection, effective breeding to increase crop productivity and resilience will be realised. The project will use our progress in understanding cereal pollen development to develop systems for controlling cereal fertility, focussing on wheat. In addition introgression lines and breeding populations will be screened to identify traits for optimal fertilisation, including high pollen production, release and durability. These will be focused around the impact of environment, particularly temperature and day length, on pollen fertility. We will determine the benefit and stability of these traits in elite commercial germplasm, enabling their potential to be determined. We will also assess natural variation at these fertility loci and develop markers to enable these traits, which could potentially impact on fertility particularly under different environmental conditions, to be followed in breeding populations.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::78aa13782dba6e7669bd7aff72bb1b6f&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::78aa13782dba6e7669bd7aff72bb1b6f&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euassignment_turned_in Project2013 - 2019Partners:KWS (United Kingdom), Syngenta (United Kingdom), LVH UK, The Maltsters Association of Great Brita, SECOBRA Research +19 partnersKWS (United Kingdom),Syngenta (United Kingdom),LVH UK,The Maltsters Association of Great Brita,SECOBRA Research,James Hutton Institute,RAGT Seeds (United Kingdom),SWRI,Scotch Whisky Research Institute,The Maltsters' Association of Great Britain (United Kingdom),James Hutton Institute,SECOBRA Research,Home Grown Cereals Authority,Home Grown Cereals Authority,Saaten Union (United Kingdom),Limagrain (United Kingdom),Mylnefield Research Services Ltd,THE JAMES HUTTON INSTITUTE,Syngenta Ltd,Agriculture and Horticulture Development Board,Saaten Union UK Ltd,RAGT Seeds Ltd,KWS UK Ltd,Mylnefield Research Services LtdFunder: UK Research and Innovation Project Code: BB/K008188/1Funder Contribution: 624,435 GBPMaltsters, brewers and distillers are concerned about the long-term sustainability of the barley crop. Seasonal problems in many parts of Europe resulted in a restricted malting barley supply that has only just been alleviated by an above average harvest in Argentina. Within the UK, drought conditions resulted in reduced barley crop quality, i.e. higher protein samples, particularly in Eastern England, where much English malting barley is sourced. Under predicted climate change scenarios, such drought conditions are likely to become more frequent and will affect the spring crop much more than the winter crop, which can escape the worst effects of summer drought through a much earlier maturity. Whilst winter barley might therefore provide a more consistent supply, the proportion bought by English maltsters has declined by over 25% over the past 20 years. This decline is due to the reduced quality level of the winter crop compared to the spring so that distillers can produce 16 more litres of raw spirit per tonne of malt on average from the latter. For an industry predicted to use 600,000t of barley from the 2012 harvest, this is a highly significant difference in production efficiency. All current UK winter barley malting varieties have been derived from Maris Otter, first recommended in 1965. Maris Otter combined the spring malting quality attributes of an older variety, Proctor, with the winter habit of Pioneer. Proctor was the major spring malting variety in the UK for many years but the introduction of Triumph was a quantum leap forward for the spring crop in terms of both quality and yield. In a previous project, we have analysed DNA fingerprints of UK spring and winter barley malting cultivars to identify genetic differences between the two crops that are associated with malting quality. Whilst plant breeders have previously tried to introgress spring quality attributes into winter barley, they have relied on chance events to assemble the right genes, which is an impossible task when the crops differ at thousands of genes. But we now have the knowledge and tools to conduct the introgression of spring attributes into winter barley in a highly targeted manner to test the hypothesis that their introduction will improve winter malting quality. The germplasm emerging from this proposal will then be used by the plant breeding partners of the project in further rounds of crossing and selection to develop improved winter malting quality cultivars that approached the spring quality levels but in a suitable agronomic background for contemporary farming practise and would thus re-generate interest in using winter barley for malting for use in brewing and distilling. As indicated in the previous paragraph, greater use of the winter crop is likely to provide a more consistent supply of malting barley in the future. As malting supplies are becoming tighter due to a variety of market factors, a switch to the higher yielding winter crop would also mean that the effects of competition for land for more profitable crops would have a less pronounced effect upon malting barley supply. As six row barley varieties tend to have a higher yield than two row, a longer term aim is to develop six row malting types that would further decrease the land area required to secure a malting barley supply.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::77576dfcf118ee5733fac80db5906bf8&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::77576dfcf118ee5733fac80db5906bf8&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euassignment_turned_in Project2016 - 2019Partners:Rothamsted Research, Saaten Union (United Kingdom), Limagrain (United Kingdom), LVH UK, SECOBRA Research +22 partnersRothamsted Research,Saaten Union (United Kingdom),Limagrain (United Kingdom),LVH UK,SECOBRA Research,Agriculture and Horticulture Development Board,Heygates Ltd,Warburtons (United Kingdom),ADM Milling Ltd (Liverpool),Hovis Ltd,Saaten Union UK Ltd,Warburtons Limited,ADM Milling Ltd (Liverpool),SECOBRA Research,Hovis Ltd,Rothamsted Research,Agrii (Mastock Arable (UK) Ltd.),KWS (United Kingdom),Agrii,AHDB-HGCA,KWS UK Ltd,Whitworth Bros Ltd,AHDB-HGCA,Heygates Ltd,Whitworth Bros Ltd,DSV UK Ltd,DSV (United Kingdom)Funder: UK Research and Innovation Project Code: BB/N000854/1Funder Contribution: 324,046 GBPNitrogen fertiliser is essential to sustain wheat yields but is also an important determinant of grain quality. This is because nitrogen is required for the synthesis of grain proteins, with the gluten proteins forming the major grain protein fraction. About 40% of the wheat produced in the UK is used for food production, particularly for making bread and other baked products. Wheat is also widely used as a functional ingredient in many processed foods, while bread wheat and imported durum wheats are used to make noodles and pasta, respectively. The gluten proteins are essential for these uses, providing visco-elastic properties to dough. Consequently, the content and quality of the grain proteins affect the processing quality, with a minimum of 13% being specified for the Chorleywood Breadmaking Process (CBP) which is used for over 80% of the "factory produced" bread in the UK. The requirement of nitrogen to produce wheat for bread making is also above the optimum required for yield, and farmers may apply up to 50 kg N/Ha above the yield optimum to achieve 13% protein (2.28% N). This is costly with nitrogen fertiliser contributing significantly to crop production, and may also contribute to a greater "nitrogen footprint" in the farmed environment. It may be possible to reduce the requirement for breadmaking wheats, to a limited extent, by optimising the efficiency of nitrogen uptake and use within the wheat plant. However, this will only have limited benefits and a more viable long-term solution is to develop new types of wheat and processing systems which will allow the use of lower protein contents for bread making. We will therefore identify types of wheat which have good and stable breadmaking quality at low grain protein. Genetic analyses of the trait will provide molecular markers to assist wheat breeders while studies of underpinning mechanisms will allow new selection procedures to be used to identify germplasm and select for quality in breeding programmes. We will also work with millers and bakers to establish optimum conditions for processing of wheats with lower protein contents.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::58c6ad093fccceb11f619d063de2b214&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::58c6ad093fccceb11f619d063de2b214&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euassignment_turned_in Project2010 - 2014Partners:RAGT Seeds (United Kingdom), Sejet Plant Breeding, John Innes Centre, KWS (United Kingdom), Premier Foods (United Kingdom) +26 partnersRAGT Seeds (United Kingdom),Sejet Plant Breeding,John Innes Centre,KWS (United Kingdom),Premier Foods (United Kingdom),Econova (Sweden),RAGT Seeds Ltd,Premier Foods Group Ltd,The Maltsters Association of Great Brita,Syngenta Ltd,BASF plc UK,National Inst of Agricultural Botany,Syngenta (United Kingdom),SECOBRA Research,The Maltsters' Association of Great Britain (United Kingdom),Svalof Weibull AB,Biomathematics and Statistics Scotland,National Institute of Agricultural Botany,Fera Science (United Kingdom),BASF AG,NABIM,Agriculture and Horticulture Development Board,National Association of British and Irish Millers,Sejet Plant Breeding,Fera Science (United Kingdom),JIC,AHDB,Scottish Crop Research Institute,SECOBRA Research,James Hutton Institute,KWS UK LtdFunder: UK Research and Innovation Project Code: BB/H004580/1Funder Contribution: 149,534 GBPFusarium head blight (FHB) of cereals is caused by a number of fungi, chiefly Fusarium species. It is of particular concern because the Fusarium species produce trichothecene mycotoxins (DON, NIV, T2 and HT-2) within grain that are harmful to human and animal consumers. FHB disease poses an increasing threat to the UK wheat and barley crops. New species have appeared and spread in the UK for which climate change may, in part, be responsible. Future predicted climate changes are likely to exacerbate risks of epidemics in the UK. The EU recently set limits for DON and limits for T2/HT-2 are imminent. It is vital that the UK is positioned to be able to comply with this legislation. It is widely recognised that resistant varieties offer the best option to control FHB. All wheat and barley breeders consider it as a major but difficult target for resistance breeding. Incorporation of high levels of resistance to FHB into wheat and barley will be critical to prevent DON, T2, HT-2 and NIV mycotoxin contamination of grain from becoming a major problem for all elements of the UK food and feed chains. Timely application with appropriate fungicides can restrict disease development and mycotoxin accumulation. Under moderate to high disease pressure, however, fungicide application often fails to reduce DON contamination to below EU legislative limits in susceptible varieties such as those currently grown in the UK. Our previous work showed that much of the susceptibility of UK varieties is due to linkage between a gene that affects the height of wheat, Rht2 (also referred to as Rht-D1b) which is in almost all UK varieties, with a gene nearby on the chromosome that increases susceptibility to FHB. This association must be broken to enable breeders to produce FHB resistant varieties with acceptable agronomic characters. The project will produce molecular markers to the region about Rht2 allowing plant breeders to maintain this agronomically important gene in their breeding programmes while selecting against the linked FHB susceptibility factor. This project aims to identify resistance to Fusarium head blight (FHB) in wheat and barley that will function against all the causal fungi associated with this disease. This project will focus on the identification of Type 1 resistance (resistance to initial infection) in wheat and barley. We have developed new tools to characterise so-called 'Type 1' resistance (resistance to initial infection), which is important for preventing infection of wheat and barley against Fusarium species that produce DON mycotoxin and those that produce the more toxic T2 and HT-2 toxins as well as against non toxin producing FHB pathogens such as Microdochium species. Plant breeding companies can immediately use the plant materials, genetic knowledge and molecular markers linked to FHB resistance within their breeding programmes to produce new resistant varieties with good characters for growing as crops in the UK. This project will determine how fungicide application influences disease and toxin accumulation in varieties with different levels of FHB resistance. The project will demonstrate how individual FHB resistances affect the RL disease score, revealing how many, and what forms of resistance are required to ensure that toxin levels in UK grain do not exceed EU limits. The project will identify the components required to establish a sustainable, integrated approach to ensure that toxin levels in cereal grain remain below EU limits. An integrated approach, based on varieties with significantly enhanced resistance and appropriate fungicide application offers the best means to achieve sustainable control of FHB and minimise the risk of mycotoxins entering the food and feed chains.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::721cfdb50fb397b5881d20b8e14bebb0&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::721cfdb50fb397b5881d20b8e14bebb0&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu