
CH2M HILL UNITED KINGDOM
CH2M HILL UNITED KINGDOM
12 Projects, page 1 of 3
assignment_turned_in Project2018 - 2019Partners:Halcrow Group Ltd, ABP Marine Env Research Ltd (AMPmer), CH2M HILL UNITED KINGDOM, Proudman Oceanographic Laboratory, NOC (Up to 31.10.2019) +4 partnersHalcrow Group Ltd,ABP Marine Env Research Ltd (AMPmer),CH2M HILL UNITED KINGDOM,Proudman Oceanographic Laboratory,NOC (Up to 31.10.2019),Associated British Ports (United Kingdom),ABP Marine Env Research Ltd (AMPmer),NOC,CH2M Hill (United Kingdom)Funder: UK Research and Innovation Project Code: EP/R024537/1Funder Contribution: 211,108 GBPProject Summary: Nature-based coastal defence solutions have increasingly been recognized as more sustainable alternatives to conventional hard engineering approaches against climate change. These include using wetlands, mangroves, coral and oyster reefs as a buffer zone, which can attenuate waves and, in a regime of moderate sea level rise, the sediment trapping in such zones can keep pace with sea level. Wetlands and mangroves are regions in which more salt-tolerant species exist, which can protect freshwater species behind them. Nature-based defences have been deployed in the USA, Netherlands and UK and also in some parts of China, with varying degrees of success. In deltas undergoing fast urbanisation, applying nature-based solutions can lead to competition for space with other land uses, e.g. land-reclamation. For optimised management, the question of how much space is required by nature-based solutions must be addressed. However, our current knowledge of the size-dependent defence-value and resilience of different ecosystems is insufficient. Additionally, we lack full understanding of the methods needed for ecosystem creation for coastal defence, as previous restoration efforts have suffered low success rates. The current proposal aims to develop process-based understanding and predictive models of ecosystem size requirements and how to create ecosystems for coastal defence, using the world's largest urban area, the Pearl River Delta (PRD) in China, as a model system. Delta-scale mangrove area monitoring and hydrodynamic modelling will be conducted to study recent wetland area changes and estimate the optimisation of ecosystem spaces for defence, under contrasting scenarios of climate change and land-reclamation. This large-scaled study will also provide underpinning boundary conditions for local-scale experiments and modelling. A set of experiments using novel instruments will be conducted to improve our insights into the processes influencing mangrove resilience and propagation. Innovative measures of using dredged materials and oyster reefs to facilitate mangrove establishment will also be tested experimentally. Local-scale models will incorporate the new experimental knowledge to predict mangrove bio-geomorphic dynamics and provide guidelines for management. The developed models and knowledge will be directly applied in the design of a pilot eco-dike project due to be constructed, in collaboration with our project partners. We will consider how to address resilient urban planning and management, in terms of combining spatial planning and disaster management by optimising land use, institutions and mechanisms for more sustainable urbanisation, exploring eco-dynamic design options to provide opportunities for nature as part of the urban development processes. Summary of the UK applicants' contribution to the project: The UK applicants will lead Work Task 1: Wetland area monitoring/hydrodynamic modelling. This work task will provide an over-view of the bio-physical conditions, including the morphological and land-use aspects of the PRD and its regional setting, for the present day, and under future climate projections of sea level and storms. The UK team will implement a high resolution unstructured-grid model (FVCOM) for the Pearl River Delta (PRD) for hydrodynamics, waves and sediment transport which will provide the interface between the larger scale atmospheric and oceanic boundary conditions and the smaller-scale process studies and ecosystem modelling to be carried out by our Dutch and Chinese partners. This model, together with regional sea level projections, will be used to provide quantitative scenarios for the local area ecological modelling.
more_vert assignment_turned_in Project2016 - 2024Partners:WSP UK LIMITED, Mott Macdonald, CIRIA, EDF Energy (United Kingdom), Halcrow Group Ltd +86 partnersWSP UK LIMITED,Mott Macdonald,CIRIA,EDF Energy (United Kingdom),Halcrow Group Ltd,LONDON UNDERGROUND LIMITED,Thales Aerospace,WSP UK LIMITED,COSTAIN LTD,TREL,NPL,WSP Civils,Telespazio Vega,Redbite Solutions,Telespazio Vega,Rolatube Technology Ltd,Heriot-Watt University,Buro Happold Limited,Arup Group Ltd,Buro Happold,BURO HAPPOLD LIMITED,Geothermal International Ltd,AIG Science,CH2M HILL UNITED KINGDOM,Tongji University,Centro Public Transport,Carillion Plc,Cambridgeshire County Council,UCL,National Physical Laboratory NPL,Transport Systems Catapult,Environmental Scientifics Group,UT,Environmental Scientifics Group,CIRIA,National Highways,Future Cities Catapult,Mott Macdonald (United Kingdom),RU,Costain Ltd,ITM,Cambridge Integrated Knowledge Centre,Department for Transport,High Speed Two HS2 Limited,Ove Arup & Partners Ltd,GE Aviation,INF,Rolatube Technology Ltd,Cementation Skanska,Tongji University,University of Cambridge,University of Oxford,Sengenia Ltd,Crossrail Limited,Arup Group,AIG Science,High Speed Two HS2 Ltd,Crossrail Limited,Geothermal International Ltd,Transport Systems Catapult,Mabey Holdings Limited,Future Cities Catapult,Centro Public Transport,Thales UK Limited,AgustaWestland,Heriot-Watt University,Sengenia Ltd,Omnisense Limited,Redbite Solutions,Cambridgeshire County Council,UNIVERSITY OF CAMBRIDGE,ITM Monitoring,EDF Energy Plc (UK),Topcon Great Britain Ltd,McLaren Automotive Ltd,Cementation Skanska Limited,Topcon,Laing O'Rourke,British Energy Generation Ltd,Laing O'Rourke plc,Mabey Holdings Limited,CH2M Hill (United Kingdom),Rutgers State University of New Jersey,TfL,Toshiba Research Europe Ltd,THALES UK LIMITED,McLaren Automotive Ltd,Highways Agency,GE Aviation,Rutgers University,Cargill PlcFunder: UK Research and Innovation Project Code: EP/N021614/1Funder Contribution: 3,163,720 GBPGlobally, national infrastructure is facing significant challenges: - Ageing assets: Much of the UK's existing infrastructure is old and no longer fit for purpose. In its State of the Nation Infrastructure 2014 report the Institution of Civil Engineers stated that none of the sectors analysed were "fit for the future" and only one sector was "adequate for now". The need to future-proof existing and new infrastructure is of paramount importance and has become a constant theme in industry documents, seminars, workshops and discussions. - Increased loading: Existing infrastructure is challenged by the need to increase load and usage - be that number of passengers carried, numbers of vehicles or volume of water used - and the requirement to maintain the existing infrastructure while operating at current capacity. - Changing climate: projections for increasing numbers and severity of extreme weather events mean that our infrastructure will need to be more resilient in the future. These challenges require innovation to address them. However, in the infrastructure and construction industries tight operating margins, industry segmentation and strong emphasis on safety and reliability create barriers to introducing innovation into industry practice. CSIC is an Innovation and Knowledge Centre funded by EPSRC and Innovate UK to help address this market failure, by translating world leading research into industry implementation, working with more than 40 industry partners to develop, trial, provide and deliver high-quality, low cost, accurate sensor technologies and predictive tools which enable new ways of monitoring how infrastructure behaves during construction and asset operation, providing a whole-life approach to achieving sustainability in an integrated way. It provides training and access for industry to source, develop and deliver these new approaches to stimulate business and encourage economic growth, improving the management of the nation's infrastructure and construction industry. Our collaborative approach, bringing together leaders from industry and academia, accelerates the commercial development of emerging technologies, and promotes knowledge transfer and industry implementation to shape the future of infrastructure. Phase 2 funding will enable CSIC to address specific challenges remaining to implementation of smart infrastructure solutions. Over the next five years, to overcome these barriers and create a self-sustaining market in smart infrastructure, CSIC along with an expanded group of industry and academic partners will: - Create the complete, innovative solutions that the sector needs by integrating the components of smart infrastructure into systems approaches, bringing together sensor data and asset management decisions to improve whole life management of assets and city scale infrastructure planning; spin-in technology where necessary, to allow demonstration of smart technology in an integrated manner. - Continue to build industry confidence by working closely with partners to demonstrate and deploy new smart infrastructure solutions on live infrastructure projects. Develop projects on behalf of industry using seed-funds to fund hardware and consumables, and demonstrate capability. - Generate a compelling business case for smart infrastructure solutions together with asset owners and government organisations based on combining smarter information with whole life value models for infrastructure assets. Focus on value-driven messaging around the whole system business case for why smart infrastructure is the future, and will strive to turn today's intangibles into business drivers for the future. - Facilitate the development and expansion of the supply chain through extending our network of partners in new areas, knowledge transfer, smart infrastructure standards and influencing policy.
more_vert assignment_turned_in Project2017 - 2020Partners:Halcrow Group Ltd, Loughborough University, Queen's University, SEVERN TRENT WATER, CH2M Hill (United Kingdom) +6 partnersHalcrow Group Ltd,Loughborough University,Queen's University,SEVERN TRENT WATER,CH2M Hill (United Kingdom),CH2M HILL UNITED KINGDOM,COSTAIN LTD,SEVERN TRENT WATER LIMITED,Queen's University Canada,Loughborough University,Costain LtdFunder: UK Research and Innovation Project Code: EP/P012493/1Funder Contribution: 284,824 GBPInfrastructure is vital for society - for economic growth and quality of life. Existing infrastructure is rapidly deteriorating, the rate of which will accelerate with increasing pressures from climate change and population growth, and the condition of the large majority of assets is unknown. Stewardship of infrastructure to ensure it continuously performs its function will be a colossal challenge for asset owners and operators. The performance of new infrastructure assets must be monitored throughout their life-cycle because they are being designed and constructed to withstand largely unknown future conditions. The UK must be better prepared to face these grand challenges by exploiting technology to increase understanding of asset deterioration and improve decision making and asset management. This research is central to EPSRC's priority area of Engineering for Sustainability and Resilience. The goal is to transform geotechnical asset management by developing new, low-cost, autonomous sensing technologies for condition appraisal and real-time communication of deterioration. This new approach will sense Acoustic Emission (AE) generated by geotechnical assets. AE is generated in soil bodies and soil-structure systems (SB&SSS) by deformation, and has been proven to propagate many tens - even hundreds - of metres along structural elements. This presents an exciting opportunity that has never been exploited before: to develop autonomous sensing systems that can be distributed across structural elements (e.g. buried pipes, pile foundations, retaining walls, tunnel linings, rail track) to listen to AE - analogous to a stethoscope being used to listen to a patient's heartbeat - and provide information on the health of infrastructure in real-time. The idea to use AE sensing to monitor geotechnical assets in this way is novel - it is expected to lead to a disruptive advance in monitoring capability and revolutionise infrastructure stewardship. AE has the potential to increase our understanding of how assets are deteriorating, which could lead to improved design approaches, and to extract more information about asset condition than existing techniques: not only deformation behaviour, but also, for example, changes in stress states, transitions from pre- to post-peak shear strength, and using correlation techniques it will be possible to locate the source of AE to target maintenance and remediation activities. AE sensing will also provide real-time warnings which will enable safety-critical decisions to be made to reduce damages and lives lost as a result of geotechnical asset failures. The number of asset monitoring locations required per unit length to achieve sufficient spatial resolution will be less than other monitoring techniques, and significantly lower cost. Piezoelectric transducers, which sense the AE, are now being developed at costs as low as a few tens of pence per sensor - this recent technological advance makes this research timely. AE sensors could be installed during construction to monitor condition throughout the life-cycle of new-build assets (e.g. HS2), and retrofitted to existing, ageing assets. This will be the most fundamental and ambitious investigation into the understanding of AE generated by SB&SSS yet attempted. The findings will mark a major leap forward in scientific understanding and our ability to exploit AE in novel asset health monitoring systems. The fellowship aims to develop robust diagnostic frameworks and analytics to interpret AE generated by geotechnical assets. This will be achieved using a powerful set of complementary element and large-scale experiments. The outcomes will be demonstrated to end-users and plans will be developed with collaborators for: full-scale field testing with in-service assets to demonstrate performance and benefits in intended applications and environments; and implementation in commercial products that could have significant societal and economic impact.
more_vert assignment_turned_in Project2015 - 2019Partners:Atkins (United Kingdom), China Academy of Building Research, Hoare Lea, Jiangsu Res Inst of Building Science, China Green Building Council +45 partnersAtkins (United Kingdom),China Academy of Building Research,Hoare Lea,Jiangsu Res Inst of Building Science,China Green Building Council,The Committee on Climate Change,CIBSE,Atkins Global (UK),Allford Hall Monaghan Morris (AHMM),Faithful and Gould,China Academy of Building Research,Public Health England,DECC,Hoare Lea,Buro Happold Limited,Buro Happold,Shanghai Research Inst of Building Sci,Arup Group Ltd,Guangdong Provincial Academy of Building,CH2M Hill (United Kingdom),Ove Arup & Partners Ltd,RICS,DHSC,BIAD,Department for Business, Energy and Industrial Strategy,Zero Carbon Hub,Zero Carbon Hub,Arup Group,Department of Energy and Climate Change,AHR Architects,PUBLIC HEALTH ENGLAND,Royal Institution of Chartered Surveyors,PHE,Fielden Clegg Bradley,LBNL,Halcrow Group Ltd,Guangdong Provincial Academy of Building,BURO HAPPOLD LIMITED,Atkins Global,Lawrence Berkeley National Laboratory,China Green Building Council,AHR Global (UK),UCL,CIBSE,Allford Hall Monaghan Morris (AHMM),CH2M HILL UNITED KINGDOM,Faithful and Gould,The Climate Change Committe,Feilden Clegg Bradley Studio,Feilden Clegg Bradley StudioFunder: UK Research and Innovation Project Code: EP/N009703/1Funder Contribution: 797,459 GBPMeeting pressing carbon emission reduction targets successfully will require a major shift in the performance of buildings. The complexity of the building stock, the importance of buildings in people's lives, and the wide spectrum of agents responsible all make buildings an important area of 'policy resistance'. Policies may fail to achieve their intended objective, or even worsen desired outcomes, because of limitations in our understanding of the building stock as a dynamically complex system. This limitation can lead to 'unintended consequences' across a range of outcomes. The concept of the 'performance gap' with regards to the energy performance of buildings is now well established and useful work to begin to understand this challenging issue has been undertaken. However, potential unintended consequences related to the inter-linked issues of energy/Indoor Environmental Quality (IEQ) present an even greater and more complex challenge - a challenge that is gaining increasing importance in the UK and China. There are exciting opportunities to address this issue of 'total performance' in order to reduce the energy demand and carbon emissions of buildings whilst safeguarding productivity and health. Our work will begin by examining the contrasting context within which buildings have been designed and constructed and within which they are used and operated internationally. We will address the policies and regulatory regimes that relate to energy/IEQ but also the assessment techniques used and the ways that buildings are utilised. We will then build on this analysis by undertaking an initial monitoring campaign in both countries to allow comparisons between the performance of the same types of building in the two different contexts. We will evaluate how energy/IEQ performance varies between building type and country. This work will enable the assembly of a unique database relating to the interlinked performance gaps. This initial monitoring work will also allow us to identify the most suitable buildings for the next stage of the work that will integrate monitoring and modelling approaches. This phase of the work will develop semi-automated building assessment methods, technologies and tools to enable rapid characterisation of probable pathologies to determine the most cost-effective route to remedy the underlying root causes of energy/IEQ underperformance. Energy/IEQ issues do not form a closed system however. In the development of relevant policies and regulations, it is vital to consider the wider system and we propose a second stream of work to address this. The team at UCL has undertaken pilot work within the housing sector as part of the EPSRC funded Platform Grant ('The unintended consequences of decarbonising the built environment'). We successfully employed a participatory system dynamics approach with a team of over 50 stakeholders and we will extend that work here to other building typologies. Such an approach can help support decision-making in complex systems, addressing challenges central to the TOP work. The proposed work is tremendously challenging and exciting. If successful it will lead the way in understanding and improving the total performance of low carbon buildings and help to develop relevant effective policies and regulations in the transition towards future Low Carbon Cities. Tsinghua and UCL have the suitable complementary world-leading expertise to undertake this work and form a long-term 'best with best' academic collaboration. The Bartlett at UCL is rated first in terms of research 'power' and environment in the UK; the Tsinghua University School of Architecture was ranked first in China in the National Assessment on Architecture in 2003, 2008, and 2011. The groups in both countries have extensive stakeholder networks and the outputs of the project will thus be communicated widely and appropriately.
more_vert assignment_turned_in Project2018 - 2023Partners:SCOTTISH ENVIRONMENT PROTECTION AGENCY, Halcrow Group Ltd, EA, Newcastle University, Met Office +28 partnersSCOTTISH ENVIRONMENT PROTECTION AGENCY,Halcrow Group Ltd,EA,Newcastle University,Met Office,Met Office,UKCIP,Dept for Env Food & Rural Affairs DEFRA,UKCIP,ENVIRONMENT AGENCY,MET OFFICE,CH2M HILL UNITED KINGDOM,UKWIR,Willis Towers Watson (UK),ETH Zurich,Dept for Env Food & Rural Affairs DEFRA,Department for Environment Food and Rural Affairs,SEPA,University Of New South Wales,Willis Research Network,Committee on Climate Change,Forestry Commission Research Agency,University New South Wales at ADFA,FORESTRY COMMISSION RESEARCH AGENCY,UNSW,EPFZ,Towers Watson,CH2M Hill (United Kingdom),Environment Agency,Newcastle University,CCC,UK Water Industry Research Ltd (UKWIR),DEFRAFunder: UK Research and Innovation Project Code: NE/R01079X/1Funder Contribution: 629,510 GBPClimate change is arguably the biggest challenge facing people this century, and changes to the intensity and frequency of climatic and hydrologic extremes will have large impacts on our communities. We use climate models to tell us about what weather in the future will be like and these computer models are based on fundamental physical laws and complicated mathematical equations which necessarily simplify real processes. One of the simplifications that really seems to matter is that of deep convection (imagine the type of processes that cause a thunderstorm). However, computers are so powerful now that we are able to produce models that work on smaller and smaller scales, and recently we have developed models which we call "convection-permitting" where we stop using these simplifications of deep convection. These "convection-permitting" models are not necessarily better at simulating mean rainfall or rainfall occurrence but they are much better at simulating heavy rainfall over short time periods (less than one day) which cause flooding, in particular flash-flood events. They are also better at simulating the increase in heavy rainfall with temperature rise that we can observe; therefore we are more confident in their projections of changes in heavy rainfall for the future. A few "convection-permitting" modelling experiments have now been run for different parts of the world but all of these have been over small regions, only the same size as the UK, or smaller. All of the experiments so far have concentrated on rainfall and none have examined how "convection-permitting" models might improve the simulation of other types of extreme weather such as hail, lightning or windstorms. In fact we know very little about how these types of extremes might change in the future. We also have no idea of the uncertainty in our experiments in terms of our predictions of future changes as we have only run one model simulation in each region - this is not useful for planning climate adaptation strategies where we really need to understand the uncertainties in our future predictions so we can plan for them. In FUTURE-STORMS we are running these "convection-permitting" models over a very large area (the whole of Europe) and we are comparing models from two different climate modelling teams at the UK Met Office and ETH Zurich in Switzerland. In addition to this we are now able to run a number of different climate models over the same region, which allows us to assess some of the uncertainties in future changes to heavy rainfall and other storm-related extreme weather. This will let us explore how heavy rainfall might change across Europe and what might be causing this. It will also allow us to look at whether these new models are able to simulate other types of extreme weather like hail, lightning and windstorms which have a huge impact on Europe, and how these might change in the future. Ultimately, we need better information on how extreme weather events might change in the future on which to make adaptation decisions and FUTURE-STORMS intends to provide this important advance, alongside translating this information into useful tools and metrics for use in climate change adaptation.
more_vert
chevron_left - 1
- 2
- 3
chevron_right