
NOVA ID
NOVA ID
70 Projects, page 1 of 14
Open Access Mandate for Publications and Research data assignment_turned_in Project2022 - 2024Partners:NOVA IDNOVA IDFunder: European Commission Project Code: 101082283Funder Contribution: 150,000 EURIonizing radiation presents a known health risk, but if used controllably it can be the basis of relevant applications spanning from healthcare to civil security. Either for proper control of the dose received by patients in medical treatments or workers in radiation hazardous environments, or for high resolution imagers, proper quantification of the radiation doses is demanded. The x-ray detectors market represented 2.5 Bn$ in 2020, and flexible/wearable X-ray detectors are seen as breakthrough innovations for next-gen devices. But to date, there is not a detection technology offering a combination of conformability, portability, large active area, small interference with the radiation received, potential for high resolution and low cost/complexity. By using the patented idea of oxide transistors as direct ionization radiation detectors coupled to the knowledge derived from ERC Starting Grant TREND in miniaturized oxide electronics using sustainable materials and processes, FLETRAD proposes a platform tackling all those requirements and going beyond them. It creates the breakthrough market opportunity of having a fully flexible and transparent radiation sensing platform, using seamlessly integrated oxide transistors both for sensors and electronics. The action intends to identify the most significant market opportunities/applications for the innovative platform, fabricate/validate a prototype attractive to stakeholders, develop an IP strategy and a business plan, including the detailed analysis of the identified business opportunities. The work will be done at CENIMAT|I3N (NOVA), in a group pioneering oxide electronics, with full support of the Innovation Research and Impact Strategy (IRIS) office at NOVA. FLETRAD has the support of key-players in ionizing radiation/flexible electronics, contributing to take our ideas into impactful market and societal needs.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::0335a5fa8335591d842a2d5a514ba186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::0335a5fa8335591d842a2d5a514ba186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2015 - 2022Partners:NOVA IDNOVA IDFunder: European Commission Project Code: 647596Overall Budget: 1,999,380 EURFunder Contribution: 1,999,380 EURThe possibility of having a unique device that converts thermal and photonics energy into electrical energy and simultaneously stores it, is something dreamed by the PI since the beginning of her research career. To achieve that goal, this project aims to gather, in a single substrate, solar cells with up-conversion nanoparticles, thermoelectrics and graphene super-capacitor, all made of thin films. These three main components will be developed separately and integrated sequentially. The innovation proposed is not limited to the integration of components, but rely in ground-breaking concepts: 1) thermoelectric elements based on thin film (TE-TF) oxides; 2) plasmonic nanoparticles for up conversion of near infrared radiation to visible emission in solar cells; 3) graphene super-capacitors; 4) integration and optimization of all components in a single CapTherPV device. This ambitious project will bring new insights at large area, low cost and flexible energy harvesting and comes from an old idea of combining energy conversion and storage that has been pursued by the PI. She started her career in amorphous silicon thin film solar cells, later she started the development of thin film batteries and more recently started a research line in thermoelectric films. If approved, this project will give financial support to consolidate the research being carried out and will give independence to the PI in terms of resources and creative think. More importantly, will facilitate the concretization of the dream that has been pursued with hard work.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::89d0c9323d927fcb328fd6cc2a7cab6f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::89d0c9323d927fcb328fd6cc2a7cab6f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2019 - 2020Partners:NOVA IDNOVA IDFunder: European Commission Project Code: 825018Overall Budget: 150,000 EURFunder Contribution: 150,000 EURA low cost and efficient cellulose aluminium polymer multi-ions solid electrolyte (CAPSEL), with ionic conductivity in the range of 1-3 mS/cm, has been produced by a simple process which enables thin and large area battery production. An electrolyte with inherent potential towards Al based batteries and posterior commercialisation. CAPSEL may represent a good alternative to Li based batteries as Al is an abundant, cheaper and less reactive metal compared to Li. The formulation of CAPSEL can be easily adapted to other ions, such as Na and Li. Furthermore, a solid electrolyte can solve many of the safety risks existing in commercially available batteries, in addition to allowing a significant reduction in their size and weight. We expect this project to give an important contribution towards a new class of highly efficiency batteries whose disposal route offers no environmental impacts. This is only possible because of its biodegradable polymeric binder and cellulose as major constituents of the electrolyte. Therefore, CAPSEL can follow conventional recycling routes of paper after the batteries' end-life cycle. CAPSEL also enables the power supply of low-cost and large area disposable applications like e-paper, smart labels and smart packing. The Proof-of-Concept is a unique opportunity to focus on further exploitation of the developed solid electrolyte whilst at the same time concentrating efforts towards the compilation of a suitable product data sheet verified by an independent laboratory - a crucial step prior to engaging with potential investors/partners for either production or commercialisation.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::f087059d79c46b6d50a0b81301acbcfd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::f087059d79c46b6d50a0b81301acbcfd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2024 - 2026Partners:NOVA IDNOVA IDFunder: European Commission Project Code: 101148726Funder Contribution: 156,779 EURIn the face of the escalating environmental challenges, the transition to renewable energies has emerged as a critical and pressing necessity for a sustainable future. Installation of photovoltaic panels is one way to contribute to the decarbonization, but currently there is only one cost-effective technology available for commercial applications - silicon. Perovskite Solar Cells (PSC) have emerged recently as a very promising alternative, but some issues like poor stability and the use of an evaporated metallic back-contact are still hindering its way through industrialization. A promising holistic solution is to replace the metallic back-contact by a highly conductive carbon material. The challenge now is to match the efficiency obtained by the metal back-contact, by maximizing the carbon material’s conductivity, enhancing the interfacial contact or increasing the photon absorption. Regarding the latter issue, light trapping structures are a promising solution since they already proved successful at maximizing the current generation in silicon solar cells. Furthermore, large-scale deposition methods must be adopted to develop a realistic experimental procedure compatible with large-scale production, and the encapsulation must be optimized to maximize the life time of the solar module. Still, the intermittency nature of solar energy might create a mismatch between energy production and consumption. An effective solution is to convert the excess energy into syngas (mixture of CO and H2) by co-electrolysis of CO2 and water. This gas can then be converted into a synthetic fuel and replace the fossil fuels derivatives, contributing for the EU’s goal of achieving net-zero carbon-emission by 2050. The optimization of the solar-to-syngas system can be complex due to the extend of dependent processes in series, and thus a computing simulation is a strong tool for predicting the operation and maximizing the energy efficiency of the entire process.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::b65d8969e5b0aaf68ef9e26a391c6411&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::b65d8969e5b0aaf68ef9e26a391c6411&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2015 - 2021Partners:NOVA IDNOVA IDFunder: European Commission Project Code: 640598Overall Budget: 1,429,720 EURFunder Contribution: 1,429,720 EURFully recyclable and low cost electronic goods are still far from reality. My interest is in creating environmental friendly advanced functional materials and processes able to result in new class of paper based electronic products. This represents a reborn of the paper millenary industry for a plethora of low cost, recyclable and disposable electronics, putting Europe in the front line of a new era of consumer electronics. While the vision of the proposal is a very ambitious one, my ground-breaking research work to date related with oxide based transistors on paper (from which I am one of the co-inventors) has contributed to the basic technological breakthroughs needed to create the key elements to establish a new era of paper electronics. Field effect transistors (FETs), memory and CMOS devices, with excellent electronic performance and using paper as substrate and dielectric have resulted from my recent work. What I am proposing now is to reinvent the concept of paper electronics. In NEW_FUN I want to develop a completely new and disruptive approach where functionalized cellulose fibers will be used not only as dielectric but also as semiconductor and conductor able to coexist in a multilayer paper structure. That is, assembling paper that can have different functionalities locally, on each face or even along its entire thickness/bulk. This way issues such as failure under bending, mechanical robustness and stability can be minimized. Doing so, electronic and electrochemical devices can be produced not only on paper but also from paper. The outputs of NEW_FUN will open the door to turn paper into a real electronic material making possible disposable/recyclable electronic products, such as smart labels/packages (e.g. food and medicine industry), sensors for air quality control (car, house and industry environments); disposable electronic devices such as bio-detection platforms, lab-on-paper systems, among others.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::4c76662528d72ce23c1794a93f35ba9b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::4c76662528d72ce23c1794a93f35ba9b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right