Powered by OpenAIRE graph
Found an issue? Give us feedback

Swerim AB

SWERIM AB
Country: Sweden
9 Projects, page 1 of 2
  • Funder: European Commission Project Code: 640769
    Overall Budget: 12,989,000 EURFunder Contribution: 12,968,400 EUR

    STEPWISE is a solid sorption technology for CO2 capture from fuel gases in combination with water-gas shift and acid gas removal. The main objectives of the proposed STEPWISE project is to scale up the technology for the CO2 capture from Blast Furnace Gases (BFG) with three overall demonstration goals in comparison to state-of-the-art amine-based technologies: • Higher carbon capture rate – i.e. lower carbon intensity, 85% reduction • Higher energy efficiency – i.e. lower energy consumption for capture (SPECCA ), 60% reduction • Better economy – i.e. lower cost of CO2 avoided, 25% reduction The STEPWISE project will achieve this by the construction and the operation of a pilot test installation at a blast furnace site enabling the technology to reach TRL6 as the next step in the research, development and demonstration trajectory. Hence further reducing the risk of scaling up the technology. The STEPWISE project has the potential to decrease CO2 emissions worldwide by 2.1Gt/yr based on current emission levels. The conservative estimate is that by 2050, a potential cost saving of 750 times the research costs for this project will be realized each year every year, with a much larger potential. The overall objective is to secure jobs in the highly competitive European steel industry, a sector employing 360 thousand skilled people with an annual turnover of €170 billion.

    more_vert
  • Funder: European Commission Project Code: 958318
    Overall Budget: 25,111,400 EURFunder Contribution: 21,296,600 EUR

    INITIATE proposes a novel symbiotic process to produce urea from steel residual gases. The project will demonstrate a reduction in; primary energy intensity of 30%; carbon footprint of 95%; the raw material intensity of 40%; and waste production of 90%. Additional to this level of reduction, the concept represents a positive business case. INITIATE will demonstrate operating reliability and technology-based innovations in a real industrial setting at TRL7 by producing urea NH3 from steel residual gases as part of three test campaigns spanning six weeks each. The reduction in primary energy intensity, carbon footprint, raw material intensity and waste production will be assessed and verified on a regional and European level by advanced dynamic modelling and Life Cycle Assessment commiserated with ISO 14404 guidelines. The project will develop a commercial implementation roadmap for immediate deployment of INITIATE after project conclusion and for ensuring roll-out of INITIATE and similar symbiotic systems. Designing a robust and bankable first-of-a-kind commercial plant to produce urea from residual steel gases will allow implementation after project conclusion. Long term roll-out will be enabled by defining collaborative strategy for stakeholders alignment to implement INITIATE and similar symbiotic systems. Finally, effective and inclusive communication and dissemination of project results are maximized by organizing summer schools and creation of Massive Open Online Course. INITIATE will take advantage of a consortium spanning the full value chain, including major steel and urea industrial players (Arcelor Mittal, SSAB, Stamicarbon, NextChem), functional material suppliers (Johnson Matthey, Kisuma Chemicals), multi-disciplinary researchers (TNO, POLIMI, Radboud University) and experienced promoters of CCUS, circularity and symbiosis topics to public (CO2 Value Europe).

    more_vert
  • Funder: European Commission Project Code: 727504
    Overall Budget: 11,406,700 EURFunder Contribution: 11,406,700 EUR

    The FReSMe project, From Residual Steel gases to Methanol, will produce a methanol that will be demonstrated in ship transportation. This green fuel will be produced from CO2, recovered from an industrial Blast Furnace, and H2 recovered both from the blast furnace gas itself, as well as H2 produced by electrolysis. The two different sources of H2 will enable (i) maximum use of the current residual energy content of blast furnace gas, while at the same time (ii) demonstrating a forward technology path where low carbon or renewable H2 become more ubiquitous. The project will make use of the existing equipment from two pilot plants, one for the energy efficient separation of H2 and CO2 from blast furnace gas, and one for the production of methanol from a CO2-H2 syngas stream. This can be realised with a small amount of extra equipment, including supplemental H2 production from an electrolyser and a H2/N2 separation unit from commercially available equipment. Methanol is a high volume platform chemical of universal use in chemical industry as well as applicable for fuelling internal combustion engines. As such it provides a promising pathway for the large scale re-use of CO2 to decarbonize the transportation and chemical sectors in Europe and decrease the dependence on fossil fuel imports. Production of methanol from CO2 offers the unique combination of scale, efficiency and economic value necessary to achieve large scale carbon reduction targets. The pilot plant will run for a total of three months divided over three different runs with a nominal production rate of up to 50 kg/hr from an input of 800 m3/hr blast furnace gas. This size is commensurate with operation at TRL6, where all the essential steps in the process must be joined together in an industrial environment. The project will address the new integration options that this technology has within the Iron and Steel industry and contains supplementary and supporting research of underlying phenomena.

    more_vert
  • Funder: European Commission Project Code: 884226
    Overall Budget: 4,059,130 EURFunder Contribution: 4,059,130 EUR

    F-CUBED aims to develop an advanced process concept for the hydrothermal conversion of a broad range of biogenic residues to intermediate bioenergy carriers (IEC) with fuel characteristics suitable for balancing the power grid. The core technology will be scaled up from lab (TRL 3) to pilot scale (TRL 5). F-CUBED will achieve a breakthrough acceleration in the utilisation of unused biogenic residues and wastes by: 1) Increasing energy density (at least to 5.5 GJ/m3) and fuel characteristics (complying with ISO/TS 17225‐8:2016-TA3 specifications) of biogenic residues through hydrothermal processing with an energy yield of 50%. 2) Showing at least a 30% improvement on residue processing costs, while obtaining GHG emission savings of at least 60% in using the IEC for heat and power generation. 3) Validating experimentally the core process by using continuous hydrothermal reactor (20 kg/hr) and dewatering pilots, in a relevant industrial environment on 3 representative side streams, at Smurfit Kappa Pitea (Sweden, paper sludge), Go Fruselva (Spain, fruit and vegetable wastes) and APPO (Italy, waste olive pomace). 4) Making and using a minimum of 100 kg (dry matter) of IEC in a relevant industrial environment. 5) Validating the parallel recovery of specific value-added products for each industrial case (nitrogen, phosphorus and potassium, terpenes and olive pomace oil recovery). The F-CUBED approach enables the overall validation of a feedstock flexible process, able to deal with variable feed characteristics, such as size, composition and pumpability. Advance modelling tools (GIS mapping) will be used to optimize the residue value chains, including logistical impacts. Through its balanced consortium, reflecting the whole value chain with both SME and large companies from different parts of Europe, F-CUBED results will be rapidly implementable and suitable to un-lock the bioenergy potential of these unused residual streams.

    more_vert
  • Funder: European Commission Project Code: 636834
    Overall Budget: 5,998,340 EURFunder Contribution: 5,998,340 EUR

    The DISIRE project has been inspired by the real existing needs of multiple industrial sectors, including the world leading industrial partners in the non-ferrous, ferrous, chemical and steel industries that are highly connected and already affiliated with the SPIRE PPP and its objectives. The overall clear and measurable objective of the DISIRE project is to evolve the existing industrial processes by advancing the Sustainable Process Industry through an overall Resource and Energy efficiency by the technological breakthroughs and concepts of the DISIRE technological platform in the field of Industrial Process Control (IPC). With the DISIRE project the properties of the raw materials or product flows will be dramatically integrated by their transformation in a unique inline measuring system that will extend the level of knowledge and awareness of the internal dynamics of the undergoing processes taking place during transformation or integration of raw materials in the next levels of production. In this approach, the Integrated Process Control system, instead of having external experts to tune the overall processes, based on the DISIRE concept will enable the self reconfiguration of all the production lines by the produced products itself. Specific DISIRE Process Analyzer Technology (PAT) will be able to define quality and performance requirements, that for the first time in the process industry will be able to be directly applied on the physical properties of the developed products and thus enabling the overall online and product specific reconfiguration of the control system. In this way, the whole production can be fully integrated in a holistic approach from the raw materials to the end product, allowing the multiple process reconfigurations and an optimal operation based on the product’s properties that can be generalized in a whole product production cycle being spanned in multiple cross-sectorial processes.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.