
EURIDA
EURIDA
7 Projects, page 1 of 2
Open Access Mandate for Publications and Research data assignment_turned_in Project2024 - 2027Partners:EURIDA, THALES, CNRS, Aristotle University of ThessalonikiEURIDA,THALES,CNRS,Aristotle University of ThessalonikiFunder: European Commission Project Code: 101135729Overall Budget: 2,750,140 EURFunder Contribution: 2,750,140 EURThe Skyrmionic Artificial Neural Network (SkyANN) presents a groundbreaking paradigm for neuromorphic computing, closely emulating brain neurophysiology by combining skyrmionic quasiparticles, which mimic neurotransmitters and facilitate complex computations at the synapse level, with electrical CMOS connections that simulate the propagation of action potentials among neurons for rapid and dense inter-layer connectivity. Our innovative magneto-electric devices aim to achieve energy consumption four orders of magnitude lower than CMOS technology and double the bandwidth for the same device footprint, enhancing edge inference and learning capabilities. This approach challenges contemporary neural networks implemented with CMOS digital, mixed-signal, and emerging in-memory computing technologies, which are limited by lower energy efficiency and reliability. Building on preliminary results from SkyANN partners, we plan an ambitious endeavor to develop a first-of-its-kind magneto-electric neural network, showcasing the promising potential of this novel technology. Along the way, we will refine materials, processes, design methodologies, and architectures to prepare the European micro- and nano-electronics ecosystem for the future, while supporting the EU's Green Deal vision. Our well-balanced consortium brings together complementary expertise and extensive knowledge, spanning from device physics to circuits and architectures across multiple layers of design abstraction. As a result, the SkyANN consortium is poised to facilitate the rapid transfer of fundamental discoveries to relevant industrial stakeholders, accelerating impact and reinforcing European strengths in the economically, geopolitically, and socially vital semiconductor sector.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::48df95e6268f0b9ae714b7c11afa5232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::48df95e6268f0b9ae714b7c11afa5232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2021 - 2026Partners:EURIDA, LABORATORIO IBERICO INTERNACIONAL DE NANOTECNOLOGIA LIN, UBx, THALES, CNRS +1 partnersEURIDA,LABORATORIO IBERICO INTERNACIONAL DE NANOTECNOLOGIA LIN,UBx,THALES,CNRS,UBT SRLFunder: European Commission Project Code: 101017098Overall Budget: 3,872,940 EURFunder Contribution: 3,872,940 EURThe goal of RadioSpin is to build a hardware neural network that computes using neural dynamics as in the brain, has a deep layered architecture as in the neocortex, but runs and learns faster, by seven orders of magnitude. For this purpose, we will use ultrafast radio-frequency (RF) oscillators to imitate the rich, reconfigurable dynamics of biological neurons. Within the RadioSpin project, we will develop a new breed of nanosynapses, based on spintronics technology, that directly process the RF signals sent by neurons and interconnects them layer-wise. We will demonstrate and benchmark our concept by building a lab-scale prototype that co-integrates for the first time CMOS RF neurons with spintronic RF synapses. We will develop brain-inspired algorithms harnessing oscillations, synchrony and edge-of-chaos for computing and show that they can run on RadioSpin deep network RF technology. Finally, we will benchmark RadioSpin technology for biomedical and RF fingerprinting applications where fast and low energy consumption classification of RF signals are key. To achieve its ambitious goals RadioSpin brings together frontier researchers along the entire chain of neuromorphic engineering, from material science (spintronic nanodevices), physics (non-linear dynamics), electronics (RF CMOS design), computer science (artificial intelligence algorithms), and microwave signal processing. Two innovative companies bring real-life use-cases (microwave mammography and IoT RF fingerprinting). The scientific experts are further complemented by experts in the field of innovation, commercial deployment and IP monetisation, as well as communication and public engagement.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::77ebc815b63dda9739d34cb7a40d9ba9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::77ebc815b63dda9739d34cb7a40d9ba9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2018 - 2022Partners:CELIGNIS LIMITED, SOPREMA, MPG, EURIDA, FHG +6 partnersCELIGNIS LIMITED,SOPREMA,MPG,EURIDA,FHG,IFEU,METGEN,TNO,CNRS,SAPPI LANAKEN,ECNFunder: European Commission Project Code: 792004Overall Budget: 3,717,300 EURFunder Contribution: 3,603,540 EURUNRAVEL aims to develop advanced pre-treatment, separation and conversion technologies for complex lignocellulosic biomass to produce usable lignin fragments, and monomeric sugars from the cellulose and hemicellulose fraction suitable for biochemical conversions. The technologies will be scaled up from lab (TRL 3) to pilot plant (TRL 5). UNRAVEL will achieve a breakthrough in the valorisation of lignocellulosic biomass by: • Utilizing complex lignocellulosic biomass sources such as forest residues, bark, straw, and nut shells • Recovering valuable components by feedstock pre-extraction prior to fractionation • Achieving at least 80% lignin yield, 90% glucan recovery from the cellulose and 80% yield of monomeric hemicellulose sugars by utilizing the TNO FABIOLA™ low temperature, energy-efficient acetone based fractionation process • Purifying the hemicellulose hydrolysate and qualifying it for fermentation into chemical building blocks • Developing lignin depolymerisation technologies • Establishing high-value lignin applications through the production of lignin-based PUR & PIR foams and lignin-based additives in bitumen for roofing applications • Demonstrating a 30% OPEX and 15 % carbon footprint reduction of the pre-treatment UNRAVEL will develop an integrated cross-sector value chain by bringing together specialists with expertise on feedstock composition, chemical pulping and pre-treatment, enzymes production, polymer chemistry, separation and reactor engineering, techno-economic and sustainability assessments and knowledge dissemination and exploitation and communication. The active involvement of three SME's and two large enterprises, active in wood pulping and the production of lignin-based building materials, strengthens a market-driven approach and commercial exploitation and implementation of the results generated in the UNRAVEL project.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::91c8c6c31fdde8dcd87363558ac74fbe&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::91c8c6c31fdde8dcd87363558ac74fbe&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2016 - 2019Partners:SAMS, EURIDA, AU, TNO, Sioen +7 partnersSAMS,EURIDA,AU,TNO,Sioen,WR,ERM,Fermentationexperts AS,DTI,AVANTIUM CHEMICALS & ENERGY AVANTIUM CHEMICAL,MATIS OHF,ECNFunder: European Commission Project Code: 654010Overall Budget: 5,999,890 EURFunder Contribution: 5,999,890 EURMacroFuels aims to produce advanced biofuels from seaweed or macro-algae. The targeted biofuels are ethanol, butanol, furanics and biogas. The project will achieve a breakthrough in biofuel production from macroalgae by: • Increasing the biomass supply by developing a rotating crop scheme for cultivation of seaweed, using native, highly productive brown, red and green seaweeds. Combined with the use of advanced textile substrates these breakthroughs will result in a year round biomass yield of 25 kg seaweeds (wet weight) per m2 per year harvested at 1000m2/hr; • Improving the pre-treatment and storage of seaweed and to yield fermentable and convertible sugars at economically relevant concentrations (10-30%); • Increasing the bio-ethanol production to economically viable concentrations of > 4%/l and; • Increasing the bio-butanol yield to 15 g./l by developing novel fermenting organisms which metabolize all sugars at 90% efficiency for ethanol and butanol; • Increasing the biogas yield to convert 90% of the available carbon in the residues by adapting the organisms to seaweed; • Developing the thermochemical conversion of sugars to fuels from the mg. scale to the kg. scale; • Performing an integral techno-economic, sustainability and risk assessment of the entire seaweed to biofuel chain. MacroFuels will develop technology for the production of fuels which are suitable as liquid fuels or precursor thereof for the heavy transport sector as well as potentially for the aviation sector. The technology will be taken from TRL3 to TRL 4/5. MacroFuels will expand the biomass available for the production of advanced biofuels. Seaweed does not need fresh water, arable land or fertilizers to grow, which provides environmental benefits, and in addition has a high carbon dioxide reduction potential as well as reduces the demand for natural resources on land. The technology offers many novel opportunities for employment along the entire value chain.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::d141df67e78faf48da608d6ead41606e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::d141df67e78faf48da608d6ead41606e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2024 - 2028Partners:RWTH, SPECIFIC POLYMERS, EURIDA, Technische Universität Braunschweig, LCE +9 partnersRWTH,SPECIFIC POLYMERS,EURIDA,Technische Universität Braunschweig,LCE,TME,SCHOTT AG,INOBAT AUTO JSA,FHG,LETI,CIC ENERGIGUNE,FUNDACION CIDETEC,Hydro-Québec,AMPERE SASFunder: European Commission Project Code: 101147533Overall Budget: 8,820,580 EURFunder Contribution: 7,588,480 EURThe growing energy demand aggravated by the high dependency on non-renewable fossil fuels has severely impacted on climate change, as evidenced by Earth’s global average temperature increase in the last century. Road transport is responsible for around three quarters of transport-related greenhouse gas (GHG) emissions, thus decarbonization of this sector is necessary to achieve a climate neutrality. Battery Electric Vehicles (BEVs) are a crucial enabler for accomplishing this target. In this frame, SOLIDBAT proposes a disruptive solid-state battery (SSB) technology to meet the challenging demands of the automotive sector. The focus is on high energy density SSB (400 Wh/kg, 1000 Wh/L) enabling fast charging, long life, and safety. To achieve these goals, SOLIDBAT entails innovation in five main areas: i) Digital tools and models for materials development and cell parameters design; ii) High capacity and water processable surface protected nickel-rich NMC cathode active material; iii) 3D-texturized high energy lithium metal anode coated with a protective artificial solid-electrolyte interphase (SEI); iv) Highly conductive and electrochemically stable hybrid gel polymer electrolyte (HGPE), crosslinked in-situ; and v) Scalable solutions for SSB technology manufacturing that are easily adaptable to current lithium-ion technology, thus hastening the introduction into the EV market. Moreover, cost, sustainability and recycling are prioritized along the whole project development, in e.g., reducing raw material use and avoiding organic solvents for greener processing. SOLIDBAT's collaborative consortium spans the whole battery value chain, fostering European innovation and industry growth. By establishing SSB manufacturing in Europe, SOLIDBAT contributes to climate-neutral energy and transport transitions, as well as avoids the dependence of battery production on Asian countries such as the current situation for Li-ion technology.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::545c5de63861aa56fd6fec1e7c5654b5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::545c5de63861aa56fd6fec1e7c5654b5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right