
Boeing
Boeing
8 Projects, page 1 of 2
assignment_turned_in Project2016 - 2019Partners:Bio-Medical Engineering (HK) Limited, Siemens plc (UK), Bio-Medical Engineering (HK) Limited, SIEMENS PLC, University of Cambridge +4 partnersBio-Medical Engineering (HK) Limited,Siemens plc (UK),Bio-Medical Engineering (HK) Limited,SIEMENS PLC,University of Cambridge,Boeing,University of Cambridge,Boeing (United States),UNIVERSITY OF CAMBRIDGEFunder: UK Research and Innovation Project Code: EP/P00962X/1Funder Contribution: 649,884 GBPThe RE-Ba-Cu-O (where RE= rare earth element such as Y, Nd, Sm, Gd, etc.) family of bulk, melt processed high temperature superconductors [(RE)BCO] is the subject of extensive world-wide research due primarily to their potential to trap large magnetic fields. This has been demonstrated spectacularly by the Cambridge Bulk Superconductivity Group, which recently set a new world record trapped field of 17.6 T at 26 K using these materials, breaking the previous world record that had stood for more than 10 years. The Cambridge Group has been at the forefront of research in this area for the past 20 years and, in addition to funding from EPSRC and other government sources, has attracted substantial and sustained industry funding. Bulk (RE)BCO superconductors have reached an important and critical stage in their research and development. Their spectacular field generating properties have high potential for a range of sustainable engineering applications, including flywheel energy storage, motors and generators, magnetic separators, bio-medical applications and magnetic levitation devices. This proposal is for a unique and timely combination of fundamental materials research and the development of practical assemblies to generate practical magnetic fields using bulk superconductors that can be used routinely and commercially in engineering devices for the first time. The main objective of the project will be to shape the magnetic field at low temperatures (50 K and 30 K), where critical current, and hence field generating capability, is significantly higher than at 77 K. Materials to improve the mechanical strength and the thermal conductivity for incorporation in the sample and assembly structures will be developed to obtain optimum performance in high field for samples and assemblies magnetised specifically by pulse magnetisation. It is becoming increasingly likely that rapidly developing cryo-cooler technology will enable practical applications at temperatures below 77 K, and this will drive the development of improved materials and new structures. The single grain, (RE)BCO bulk superconductors developed with improved mechanical strength and thermal conductivity will be incorporated into assemblies of different composite shapes of different (RE)BCO materials to enable the control of magnetic field strength and distribution. The properties and performance of these assemblies will be compared with larger sized, individual samples of comparable surface areas at 77 K where the requirement for mechanical strength is relatively modest. Capability developed during our current EPSRC grant on multi-seeding will further enable the fabrication of multi-seeded, quasi-single grains, whose properties will be compared with an assembly of smaller, closely packed samples of similar sizes. The trapped field and levitation force of assemblies of different (RE)BCO superconductors arranged in different orders will be measured at 77 K and compared with the properties of conventional, single grains of the same size. The project, which will continue to support outreach in UK school, colleges and universities, benefits from strong financial support of major international industrial collaborators, including the Boeing Company, Siemens and Bio-med (UK).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::6a5249228a790ef934a5d885b0cc48aa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::6a5249228a790ef934a5d885b0cc48aa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2023 - 2025Partners:University of Cambridge, Intellegens, University of Cambridge, Renishaw (United Kingdom), BAE Systems (United Kingdom) +15 partnersUniversity of Cambridge,Intellegens,University of Cambridge,Renishaw (United Kingdom),BAE Systems (United Kingdom),Intellegens,FORD MOTOR COMPANY LIMITED,CamAdd,RENISHAW,Renishaw plc (UK),CamAdd,Manufacturing Technology Centre (United Kingdom),Boeing (United States),BAE Systems (UK),BAE Systems (Sweden),Taraz Metrology,Ford Motor Company (United Kingdom),UNIVERSITY OF CAMBRIDGE,MTC,BoeingFunder: UK Research and Innovation Project Code: EP/X010929/1Funder Contribution: 1,798,590 GBPThe early prospects of Additive Manufacturing (AM) technologies promised to provide greater design freedoms, raise productivity levels, minimise material usage, compress supply chains, and enable the producer to attain greater levels of competitiveness by delivering enhanced product capabilities. Metal based LPBF AM systems have developed steadily over the past 20 years and now represent a multibillion-pound global market in machines, materials, and software. They find niche low volume applications in many industrial sectors and somewhat wider applications in aerospace and biomedical sectors. However LPBF AM processes are still slow compared to traditional manufacturing routes and are quite complex. They require precise focusing and manipulation of high energy laser beams over large powder beds in order to consolidate metal powder into a 3-dimensional solid through laser melting. Melting strategies play a significant role in part quality. Single laser beam melting strategies employed in all commercial systems suffer from melt instabilities, low melting efficiencies, and complex scanning strategies to reach high densities. They require a high level of labour-intensive part-specific build parameter refinement and time-consuming post processing operations. Despite the clear attractiveness of this production route, there remain several challenges in terms of build rates, process stability, part accuracy, repeatability, and part cost. In this project we propose to investigate several technology solutions that address these fundamental problems. To improve build rate we will establish a new class of LPBF AM capability by re-configuring the laser powder interaction process away from the current single laser interaction to large scale laser arrays. This approach offers increased melting efficiencies and true power scalability in the multi-kW domain. Since laser arrays are readily scalable, a 20kW system could deliver build rates of 153 kg in 24 hours. This is some 20 times faster than current systems. Our approach could offer world leading performance figures for LPBF AM systems. The use of laser arrays enables the problematic keyholing regime to be replaced with conduction limited regime leading to dramatic increases in process stability and part densities routinely reaching 99.99%. More stable melting regimes with reduced thermal gradients and reduce residual stress, reduce part distortion, and ultimately increase part accuracy. In process metrology will be applied to detect errors in the build layers and enable corrective steps thereby increasing process repeatability and deliver a right-first-time production process. With the combined innovations cited above we estimate that part costs savings up to 80% could be achieved compared to conventional LPBF AM systems.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1e09fe950d3eb9185a790102fe505985&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1e09fe950d3eb9185a790102fe505985&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2025Partners:Institute of Asset Management, MicrofluidX Ltd, Highways Agency, Institute of Asset Management, Scorpion Tooling UK Ltd +29 partnersInstitute of Asset Management,MicrofluidX Ltd,Highways Agency,Institute of Asset Management,Scorpion Tooling UK Ltd,MicrofluidX Ltd,ENVIRONMENT AGENCY,University of Bath,Rolls-Royce (United Kingdom),Health Service Executive,EA,Scorpion Tooling UK Ltd,Laing O'Rourke plc,National Highways,MTC,Anstalt für Verbrennungskraftmaschinen List,Environment Agency,Logidot (Sonodot Ltd) (UK),Manufacturing Technology Centre (United Kingdom),Logidot (Sonodot Ltd) (UK),AVL List GmbH,Domin Fluid Power Ltd,ARES Software UK Ltd.,Laing O'Rourke,Domin Fluid Power Ltd,Galorath International Limited,Boeing (United States),ARES Software UK Ltd.,University of Bath,Galorath International Limited,Rolls-Royce Plc (UK),Rolls-Royce (United Kingdom),DEFRA,BoeingFunder: UK Research and Innovation Project Code: EP/V062042/1Funder Contribution: 5,037,460 GBPImagine you are responsible for the digitisation journey of your company's manufacturing. You know by embedding digitisation throughout the whole manufacturing value chain will bring success. However, your manufacturing portfolio is diverse e.g. high volume fast moving white goods, novel pharmaceutical biological drugs, automotive components, chemical synthesis and aircraft avionics. You also design, manufacture and operate nuclear facilities. Each of the sectors claim they are unique; however, your experience evidences the underlying challenges are common - although often articulated in different ways! You have learnt lessons from the 1980's where companies adopted automation because 'it was the new shiny technology" but productivity savings were not always realised, and the Made Smarter Review evidenced that in 2017 productivity challenges, still remain - even though the technology is available. You know that people are the critical element. You have seen manufacturing systems fail to deliver because of employee pushback, lack of engagement/skills/leadership as well as poor change management (Made Smarter Review 2017, Vander Luis Da Silva, et al. 2020). You recognise to create value in manufacturing through digitalisation needs investment in people. It is your view that the right combination of current technology, data and people can deliver SMART manufacturing today i.e. if we have the right people, we can be responsive, reactive, make smart decisions to maximise manufacturing value using live data and information. However, to achieve digitally engaged people, especially in manufacturing you believe there needs to be a process for manufacturing companies to follow, regardless of sector and size. The vision of this centre is to enable 'UK Manufacturing to improve their productivity year on year by investing in their biggest assets - people"". This investment will lead to the uptake of digitalisation. As part of our ambitious centre, Theme 4 - "Societal and cultural change: managing the disruptive impact of digital technologies." i.e. achieving digitally engaged people is core and will account for up-to 65% of our activities. Around 56% of UK manufacturing (Q2, 2019) are SMEs which are critical to UK Manufacturing. To meet our goal of digitally engaged people our research will engage the whole manufacturing value chain through Theme 3 - "connected and versatile supply chain" our second core theme However, we recognise investing in people will 'touch' all of the themes and our networking activities will be crucial in leveraging value from the Made Smarter investments. In summary, our hypothesis is that regardless of manufacturing sector and company size a common process leading to digitally engaged people is achievable in practice i.e. in industry. Impacts from embedding our research into aerospace manufacturing demonstrated the data/information engineers believed they needed, was not the data/information they used to make decisions. We were able to increase their productivity by 47% through a combination of manufacturing digitalisation and human factors. This was achieved through a step-by-step process, using data analytics, human factors and observing people in action. Our centre will build on this expertise and create a generic process for use across UK manufacturing - leading to increased productivity.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d956d19205a9fb0a08c58ce9f503cfaf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d956d19205a9fb0a08c58ce9f503cfaf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2006 - 2009Partners:Atkins Design Environment & Engineering, SERCO, Thales Group, INRIX (United Kingdom), Cambridge City Council +37 partnersAtkins Design Environment & Engineering,SERCO,Thales Group,INRIX (United Kingdom),Cambridge City Council,Nokia Research Centre,Leicestershire Partnership NHS Trust,IBM (United Kingdom),Newcastle University,SERCO,Cambridge City Council,Abington Partners,National Physical Laboratory,TRANSPORT FOR LONDON,ScienceScope (United Kingdom),Newcastle University,Boeing,Highways Agency,ITIS Holdings plc,Transport for London Bus Priority Unit,Arup Group Ltd,Vassar College,Serco (United Kingdom),Arup Acoustics,PTV Group (Germany),Highways Agency,NPL,Hampshire County Council,PTV System Software und Consulting GmbH,Leicester Partnership,Hampshire County Council,IBM (United Kingdom),Owlstone Limited,Atkins UK,Boeing (United States),Owlstone Limited,Nokia (Finland),Serco (United Kingdom),SOLARTECH LTD,Thales Research Ltd,TfL,Vassar CollegeFunder: UK Research and Innovation Project Code: EP/E002129/1Funder Contribution: 861,163 GBPThe impact of road traffic on local air quality is a major public policy concern and has stimulated a substantial body of researchaimed at improving underlying vehicle and traffic management technologies and informing public policy action. Recent work hassought to use a variety of vehicle-based, person-based and infrastructure-based sensor systems to collect data on key aspects ofdriver and traffic behaviour, emissions, pollutant concentrations and exposure. The variety and pervasiveness of the sensor inputsavailable will increase significantly in the future as a result both of the increasingly widespread penetration of existingtechnologies (e.g., GPS based vehicle tracking, CANbus interfaces to on-board engine management system data) within thevehicle parc and the introduction of new technologies (such as e.g., UV sensing and nanotechnology based micro sensors). Aparticularly exciting direction for future development will be in the use of vehicles as platforms for outward facing environmentalsensor systems, allowing vehicles to operate as mobile environmental probes, providing radically improved capability for thedetection and monitoring of environmental pollutants and hazardous materials.However, these developments present new and formidable research challenges arising from the need to transmit,integrate, model and interpret vast quantities of highly diverse (spatially and temporally varying) sensor data. Our approach in thisproject is to address these challenges by novel combination and extension of state-of-the-art eScience, sensor, positioning andmodelling (data fusion, traffic, transport, emissions, dispersion) technologies. By so doing, we aim to develop the capability tomeasure, model and predict a wide range of environmental pollutants and hazards (both transport related and otherwise) using agrid of pervasive roadside and vehicle-mounted sensors. This work will be at the leading edge of eScience, stretching thecapabilities of the grid in a number of aspects of the processing of massive volumes of sensor data.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::61aa1c7f148eff1bd1719ceb4702f76a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::61aa1c7f148eff1bd1719ceb4702f76a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2006 - 2009Partners:Highways Agency, SERCO, Hampshire County Council, Imperial College London, Thales Group +36 partnersHighways Agency,SERCO,Hampshire County Council,Imperial College London,Thales Group,INRIX (United Kingdom),Cambridge City Council,Leicester Partnership,Abington Partners,ScienceScope (United Kingdom),LogicaCMG,Owlstone Limited,Owlstone Limited,Atkins Design Environment & Engineering,Nokia Research Centre,Leicestershire Partnership NHS Trust,IBM (United Kingdom),PTV Group (Germany),NPL,Boeing,ITIS Holdings plc,Transport for London Bus Priority Unit,SOLARTECH LTD,Thales Research Ltd,TfL,Atkins UK,Boeing (United States),Nokia (Finland),Hampshire County Council,Serco (United Kingdom),Logica Plc,SERCO,Cambridge City Council,Highways Agency,PTV System Software und Consulting GmbH,Arup Group Ltd,Serco (United Kingdom),Arup Acoustics,National Physical Laboratory,TRANSPORT FOR LONDON,IBM (United Kingdom)Funder: UK Research and Innovation Project Code: EP/E002102/1Funder Contribution: 1,457,690 GBPThe impact of road traffic on local air quality is a major public policy concern and has stimulated a substantial body of research aimed at improving underlying vehicle and traffic management technologies and informing public policy action. Recent work has begun to exploit the capability of a variety of vehicle-based, person-based and infrastructure-based sensor systems to collect real time data on important aspects of driver and traffic behaviour, vehicle emissions, pollutant dispersion, concentration and human exposure. The variety, pervasiveness and scale of these sensor data will increase significantly in the future as a result of technological developments that will enable sensors to become cheaper, smaller and lower in power consumption. This will open up enormous opportunities to improve our understanding of urban air pollution and hence improve urban air quality. However, handing the vast quantities of real time data that will be generated by these sensors will be a formidable task and will require the application of advanced forms computing, communication and positioning technologies and the development of ways of combining and interpreting many different forms of data. Technologies developed in EPSRC's e-Science research programme offer many of the tools necessary to meet these challenges. The aim of the PMESG project is to take these tools and by extending them where necessary in appropriate ways develop and demonstrate practical applications of e-Science technologies to enable researchers and practitioners to coherently combine data from disparate environmental sensors and to develop models that could lead to improved urban air quality. The PMESG project is led by Imperial College London, and comprises a consortium of partners drawn from the Universities of Cambridge, Southampton, Newcastle and Leeds who will work closely with one another and with a number of major industrial partners and local authorities. Real applications will be carried out in London, Cambridge, Gateshead and Leicester which will build on the Universities' existing collaborative arrangements with the relevant local authorities in each site and will draw on substantial existing data resources, sensor networks and ongoing EPSRC and industrially funded research activities. These applications will address important problems that to date have been difficult or impossible for scientists and engineers working is this area of approach, due to a lack or relevant data. These problems are of three main types; (i) measuring human exposure to pollutants, (ii) the validation of various detailed models of traffic behaviour and pollutant emission and dispersion and (iii) the development of transport network management and control strategies that take account not just of traffic but also air quality impacts. The various case studies will look at different aspects of these questions and use a variety of different types of sensor systems to do so. In particular, the existing sensor networks in each city will be enhanced by the selective deployment of a number of new sensor types (both roadside and on-vehicle/person) to increase the diversity of sensor inputs. The e-Science technologies will be highly general in nature meaning that will have applications not only in transport and air quality management but also in many other fields that generate large volume of real time location-specific sensor data.Each institution participating in this project will be submitting their resource summary individually to Je-s. The resources listed within this Je-S Proposal are solely those of Imperial College with other institutions submitting their costs seperately, with one case for support.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::204a8d95a3c353deae02091a48757a4a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::204a8d95a3c353deae02091a48757a4a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right