Powered by OpenAIRE graph
Found an issue? Give us feedback

Ørsted (Denmark)

Ørsted (Denmark)

5 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/R004900/1
    Funder Contribution: 3,921,690 GBP

    The opening of Siemens new £310m offshore wind (OSW) turbine blade factory in Hull is a milestone for the industry. It coincides with increased investment in operations and maintenance activities to service the increasing capacity of OSW farms, especially by the world's largest OSW developer, DONG Energy. This proposal brings together these two major players with world-leading academic researchers in a £7.64m, 5-year programme. Focussing on TRL1-3 it will address the fundamental research problems that will help to reduce the Levelised Cost of Electricity (LCoE) from OSW and to support UK supply chain growth. The £3.83m requested from EPSRC unlocks £2.50m investment by the industrial players in lower TRL activity that they would not otherwise fund to this level. A further £1.31m is invested by the academic partners.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/H013857/1
    Funder Contribution: 325,090 GBP

    Offshore wind farms are gaining popularity in the UK due to the current interest in the need for greener energy sources, security of energy supply and to the public's reluctance to have wind farms on-shore. Offshore wind farms often contain hundreds of turbines supported at heights of 30m to 50m. The preferred foundations for these tall structures are large diameter monopiles due to their ease of construction in shallow to medium water depths. These monopiles are subjected to large cyclic, lateral and moment loads in addition to axial loads. It is anticipated that each of these foundations will see many millions of cycles of loading during their design life. In coastal waters around the UK, it is common for these monopiles to pass through shallow layers of soft, poorly consolidated marine clays before entering into stiffer clay/sand strata. One of the biggest concerns with the design of monopiles is their behaviour under very large numbers of cycles of lateral and moment loads. The current design methods rely heavily on stiffness degradation curves for clays available in the literature that were primarily derived for earthquake loading on relatively small diameter piles with relatively small numbers of cycles of loading. Extrapolation of this stiffness deterioration to large diameter piles with large numbers of cycles of loading represents the key risk factor in assessing the performance of offshore wind turbines. Further research is therefore required. The proposed project aims to understand the behaviour of large diameter monopiles driven through clay layers of contrasting stiffness and subjected to cyclic lateral and moment loading. Centrifuge model tests will be conducted taking advantage of recent developments at the Schofield Centre that include a computer-controlled 2-D actuator that can apply both force or displacement controlled cyclic loading to monopiles in-flight. In addition it is possible to carry out in-flight installation of the monopiles to simulate the insertion of these monopiles into the seabed. New equipment will be developed for the in-flight measurement of soil stiffness and dynamic response comparative to the state-of-the-art equipment which is now used in the field. The main outcome of the project will be a better understanding of the response of the monopiles in layered soil systems to large number of loading cycles (lateral and moment loads). The results will be directly compared to the current design practices and guidelines for improved design will be developed. The outcome of this project will allow an accurate estimation of the behaviour of offshore monopile foundations under very large numbers of cycles of loading, thus leading to a confident estimation of the life cycle of the foundation. This is critical in determining the economic viability of an offshore wind farm given that the capital costs are high and the revenue stream is relatively low but continues for the life of the wind farm.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K002252/1
    Funder Contribution: 5,621,020 GBP

    The UK electricity system faces challenges of unprecedented proportions. It is expected that 35 to 40% of the UK electricity demand will be met by renewable generation by 2020, an order of magnitude increase from the present levels. In the context of the targets proposed by the UK Climate Change Committee it is expected that the electricity sector would be almost entirely decarbonised by 2030 with significantly increased levels of electricity production and demand driven by the incorporation of heat and transport sectors into the electricity system. The key concerns are associated with system integration costs driven by radical changes on both the supply and the demand side of the UK low-carbon system. Our analysis to date suggests that a low-carbon electricity future would lead to a massive reduction in the utilisation of conventional electricity generation, transmission and distribution assets. The large-scale deployment of energy storage could mitigate this reduction in utilisation, producing significant savings. In this context, the proposed research aims at (i) developing novel approaches for evaluating the economic and environmental benefits of a range of energy storage technologies that could enhance efficiency of system operation and increase asset utilization; and (ii) innovation around 4 storage technologies; Na-ion, redox flow batteries (RFB), supercapacitors, and thermal energy storage (TES). These have been selected because of their relevance to grid-scale storage applications, their potential for transformative research, our strong and world-leading research track record on these topics and UK opportunities for exploitation of the innovations arising. At the heart of our proposal is a whole systems approach, recognising the need for electrical network experts to work with experts in control, converters and storage, to develop optimum solutions and options for a range of future energy scenarios. This is essential if we are to properly take into account constraints imposed by the network on the storage technologies, and in return limitations imposed by the storage technologies on the network. Our work places emphasis on future energy scenarios relevant to the UK, but the tools, methods and technologies we develop will have wide application. Our work will provide strategic insights and direction to a wide range of stakeholders regarding the development and integration of energy storage technologies in future low carbon electricity grids, and is inspired by both (i) limitations in current grid regulation, market operation, grid investment and control practices that prevent the role of energy storage being understood and its economic and environmental value quantified, and (ii) existing barriers to the development and deployment of cost effective energy storage solutions for grid application. Key outputs from this programme will be; a roadmap for the development of grid scale storage suited to application in the UK; an analysis of policy options that would appropriately support the deployment of storage in the UK; a blueprint for the control of storage in UK distribution networks; patents and high impact papers relating to breakthrough innovations in energy storage technologies; new tools and techniques to analyse the integration of storage into low carbon electrical networks; and a cohort of researchers and PhD students with the correct skills and experience needed to support the future research, development and deployment in this area.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L016303/1
    Funder Contribution: 4,026,000 GBP

    This proposal is for a Doctoral Training Centre to provide a new generation of engineering leaders in Offshore & Marine Renewable Energy Structures. This is a unique opportunity for two internationally leading Universities to join together to provide an industrially-focussed centre of excellence in this pivotal subject area. The majority of informed and balanced views suggest approximately 180 TWh/year of offshore wind, ~300km of wave farms (19 TWh/year), 1,000 tidal stream turbines (6 TWh/year) and 3 small tidal range schemes (3 TWh/year) are desirable/achievable using David MacKay's UK DECC 2050 Pathways calculator. These together would represent 30% of predicted actual UK electricity demand. This would be a truly enormous renewable energy contribution to the UK electricity supply, given the predicted increase of electricity demand in the transport sector. The inclusion of onshore wind brings this figure closer to 38% of UK electricity by 2050. RenewablesUK predicts Britain has the opportunity to lead the world in developing the emerging marine energy industry with the sector having the potential to employ 10,000 people and generate revenues of nearly £4bn per year by 2020. The large scale development of offshore renewable energy (Wind, Wave and Tidal) represents one of the biggest opportunities for sustainable economic growth in the UK for a generation. The emerging offshore wind sector is however unlike the Oil & Gas industry in that structures are unmanned, fabricated in much larger volumes and the commercial reality is that the sector has to proactively take measures to further reduce CAPEX and OPEX. Support structures need to be structurally optimised and to avail of contemporary and emerging methodologies in structural integrity design and assessment. Current offshore design standards and practices are based on Offshore Oil & Gas experience which relates to unrepresentative target structural reliability, machine and structural loading characteristics and scaling issues particularly with respect to large diameter piled structural systems. To date Universities and the Industry have done a tremendous job to help device developers test and trial different concepts however the challenge now moves to the next stage to ensure these technologies can be manufactured in volume and deployed at the right cost including installation and maintenance over the full design life. This is a proposal to marry together Marine and Offshore Structures expertise with emerging large steel fabrication and welding/joining technologies to ensure graduates from the programme will have the prerequisite knowledge and experience of integrated structural systems to support the developing Offshore and Marine Renewable Energy sector. The Renewable Energy Marine Structures (REMS) Doctoral Centre CDT will embrace the full spectrum of Structural Analysis in the Marine Environment, Materials and Engineering Structural Integrity, Geotechnical Engineering, Foundation Design, Site Investigation, Soil-Structure Interaction, Inspection, Monitoring and NDT through to Environmental Impact and Quantitative Risk and Reliability Analysis so that the UK can lead the world-wide development of a new generation of marine structures and support systems for renewable energy. The Cranfield-Oxford partnership brings together an unrivalled team of internationally leading expertise in the design, manufacture, operation and maintenance of offshore structural systems and together with the industrial partnerships forged as part of this bid promises a truly world-leading centre in Marine Structures for the 21st Century.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P001173/1
    Funder Contribution: 5,359,130 GBP

    Energy systems are vitally important to the future of UK industry and society. However, the energy trilemma presents many complex interconnected challenges. Current integrated energy systems modelling and simulation techniques suffer from a series of shortcomings that undermine their ability to develop and inform improved policy and planning decisions, therefore preventing the UK realising huge potential benefits. The current approach is characterised by high level static models which produce answers or predictions that are highly subject to a set of critical simplifying assumptions and therefore cannot be relied upon with a high degree of confidence. They are unable to provide sufficiently accurate or detailed, integrated representations of the physics, engineering, social, spatial temporal or stochastic aspects of real energy systems. They also struggle to generate robust long term plans in the face of uncertainties in commercial and technological developments and the effects of climate change, behavioural dynamics and technological interdependencies. The aim of the Centre for Energy Systems Integration (CESI) is to address this weakness and reduce the risks associated with securing and delivering a fully integrated future energy system for the UK. This will be achieved through the development of a radically different, holistic modelling, simulation and optimisation methodology which makes use of existing high level tools from academic, industry and government networks and couples them with detailed models validated using full scale multi vector demonstration systems. CESI will carry out uncertainty quantification to identify the robust messages which the models are providing about the real world, and to identify where effort on improving models should be focused in order to maximise learning about the real world. This approach, and the associated models and data, will be made available to the energy community and will provide a rigorous underpinning for current integrated energy systems research, so that future energy system planning and policy formulation can be carried out with a greater degree of confidence than is currently possible. CESI is a unique partnership of five research intensive universities and underpinning strategic partner Siemens (contribution value of £7.1m to the centre) The Universities of Newcastle, Durham, Edinburgh, Heriot-Watt and Sussex have a combined RCUK energy portfolio worth over £100m. The centre will have a physical base as Newcastle University which will release space for the centre in the new £60m Urban Sciences Building. This building will contain world-class facilities from which to lead international research into digitally enabled urban sustainability and will also be physically connected to a full scale instrumented multi vector energy system. The building will feature an Urban Observatory, which will collect a diverse set of data from across the city, and a 3D Decision Theatre which will enable real-time data to be analysed, explored and the enable the testing of hypotheses. The main aim of CESI's work is to develop a modular 'plug-n-play' environment in which components of the energy system can be co-simulated and optimised in detail. With no technology considered in isolation, considering sectors as an interlinked whole, the interactions and rebound effects across technologies and users can be examined. The methodology proposed is a system architect concept underpinned by a twin track approach of detailed multi-vector, integrated simulation and optimisation at various scales incorporating uncertainty, coupled with large scale demonstration and experimental facilities in order to test, validate and evaluate solutions and scenarios. A System Architect takes a fully integrated, balanced, long term, transparent approach to energy system planning unfettered by silos and short term thinking.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.