Powered by OpenAIRE graph
Found an issue? Give us feedback

Schwer Engineering & Consulting Services

Schwer Engineering & Consulting Services

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/Y014146/1
    Funder Contribution: 1,073,170 GBP

    Blast loading from explosives remains a global threat to life. This can be targeted terrorist attacks such as the 7/7 bombings and Manchester Arena attacks, the lasting effects of explosive remnants of war (such as landmines in post-conflict regions), or explosive violence in active conflict zones (such as Ukraine). The research community has a good understanding of blast loads generated in simplified settings, such as high explosives detonated in free air, but real-world explosions occur when explosives are encased in other media (such as suitcases, pipe bombs, landmines, and IEDs). The HEADaMM project will develop world-leading experimental approaches to identify the complex mechanisms involved in detonating explosives surrounded by media other than air, including measuring the loads and tracking how the explosive fireball expands and interacts with its surroundings. By understanding the effects of the surrounding medium, we will unlock the key to controlling the subsequent blast shock and ejecta, making it possible to predict and mitigate their deadly effects. This project will, for the first time, use thermal management of the explosive energy output to understand and control the subsequent blast shock from a high explosive detonation. A mechanistic model for how the load from an encased charge is transferred into the surroundings will be generated by conducting physical tests with a novel, world-leading apparatus for the measurement of loading from explosions. This is to be combined with expertise in the fields of optics/thermometry to enable us to fully quantify the state of the explosion at any point in time. The knowledge and supporting model will be able to drive forward applications such as civilian demining suits and protection for humanitarian convoys, as well as protection for buried services in urban environments. Specifically, the model will allow for the optimization of the protection afforded by life-preserving systems based on the conditions/threat to be encountered, which has never previously been attempted.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S037241/1
    Funder Contribution: 195,564 GBP

    Terrorist attacks are becoming more deadly, and terrorist groups are beginning to engage in tactics with the specific aim to cause maximum casualties. Such attacks range from those targeting personnel, e.g. in crowded places such as Istanbul Airport and Manchester Arena, or those targeting infrastructure, e.g. Metrojet Flight 9268. In order to ensure that engineers provide effective and efficient protection systems, we must fully understand how a blast load develops in a complex, crowded environment, and how the presence of obstacles and obstructions alters the propagation of a blast wave. Whilst it is known that a blast wave will reflect off and diffract around an obstacle, accurate quantification of this effect and a detailed understanding of the mechanisms governing this behaviour have, to date, eluded researchers in the field of blast protection engineering. This project aims to address this knowledge gap through experimental work at a world-leading facility, involving direct measurement of blast wave parameters both at the source and downstream of the obstacle. This experimental work will be supplemented with cutting-edge numerical analysis, using tools specifically designed for simulation of blast wave propagation in complex environments. Both of these approaches will then be combined to develop generalised relationships for the interaction of blast waves with obstacles, enabling a semi-empirical tool to be developed for rapid calculation of the flow field surrounding an obstacle following detonation of a high explosive. This project aims to prove the concept of porous blast barriers, i.e. barriers comprising a series of smaller obstacles rather than a large, imposing, (typically concrete) monolithic structure. Such designs, it is envisaged, will become the next generation of urban blast protection strategies: engineered systems with tailored properties to achieved maximum blast protection, but compatible with a modern, open, green city. Blast protection systems that do not look like blast protection systems.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R045240/1
    Funder Contribution: 1,284,840 GBP

    Analysis of the effects of high explosive blast loading on structures has applications in transport security, infrastructure assessment and defence protection. Engineers must utilise materials in efficient and effective ways to mitigate loads of extreme magnitudes, acting over milliseconds. But there is a fundamental problem which hampers research and practice in this field; we still do not fully understand the loads generated by a high explosive blast. Scientific characterisation of blast loading was a pressing issue in the middle of the last century, as researchers developed methods to predict the loading from large conventional blasts, and from atomic weapons at relatively long distances from targets. The huge amount of effort expended on this work, and the involvement of some of the world's leading physicists and mathematicians (G.I. Taylor, John von Neumann) reflected the existential nature of that threat. This work was predominately based on studying blast loading on targets at relatively long distances from detonations (far-field). Over the past few decades, whilst great advances have been made in understanding and designing materials to withstand extraordinary loads, experimental characterisation of blast loading itself has not kept pace in three key areas, which this project directly aims to address: Firstly, we don't know the magnitudes of explosive loading on targets very close to a high explosive detonation. Today's terrorist threats are frequently from smaller, focused, close-range explosions. Scenarios such as bombs smuggled onto aircraft, or targeted attacks on key items of critical infrastructure are ones in which such "near-field" loading is potentially devastating. But there is an almost total absence of high quality experimental work on characterising near-field blast loading. Predictions in these safety-critical areas currently rely on extrapolation of simple far-field models, or the use of inadequately validated numerical models. The project will provide new, properly validated, numerical models based on high quality experimental work to address this. This raises the second knowledge gap. Our current models of detonation-to-blast-wave mechanisms are based on simplified assumptions, such as that energy is released essentially instantaneously on detonation. Whilst this appears to work well for the far-field, there are major doubts over its validity in the near-field. This project will bring together blast engineers, high-temperature experimentalists, and energetic chemistry researchers to identify the role of early-stage post-detonation chemical reactions between the explosive fireball and the atmospheric oxygen in releasing energy, and how that affects the subsequent blast loading. The data gathered in the project will allow a new conceptual blast model to be created based on novel experimental analysis. The final knowledge gap is the question of whether blast loading in well-controlled scientific experiments is essentially deterministic or chaotic in nature. Addressing this issue is vital if the blast loading research community is to have the equivalent of a standard wind tunnel or shaking table test. Our preliminary work has led to the hypothesis that there is a region at the boundary between the near- and far-fields, where instabilities in the fireball will lead to large and random spatial and temporal variations in pressure loading, but that either side of this, the loading should be deterministic and determinable. The project will provide the data to validate this hypothesis, thus being able to provide guidance to other researchers in the field. Addressing these gaps, through a programme of multi-disciplinary experimental research, will produce a step change in our understanding of blast loading and our ability to protect against blast threats.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.