
University of Leuven
University of Leuven
39 Projects, page 1 of 8
assignment_turned_in Project2015 - 2018Partners:KU Leuven, University of Manchester, University of Salford, University of LeuvenKU Leuven,University of Manchester,University of Salford,University of LeuvenFunder: UK Research and Innovation Project Code: EP/M029867/1Funder Contribution: 599,506 GBPWhile rare earth metals are used in relatively small quantities, they play a major role in cutting edge technologies, such as electronics, information technology and in automobile industries. These metals are used in the high-powered magnets used in computers, they are components of wind-turbines and electric cars, they are used in fluorescent lights and in several catalytic processes. Roughly 86% of all rare earths come from China. This has been recognised as a significant risk to be so dependent on one country. Unfortunately the UK possesses very few rare-earth containing minerals, but what it can do to become more self-sufficient is to recycle the rare-earths that are in waste-piles. Currently the UK has little activity in this area, but recent parliamentary reports draw attention to the need for protecting the supply of rare earths and one foresees a growing effort in this area. The UK does possess, however, a strong scientific base in the reprocessing of nuclear fuel using liquid-liquid extraction. We have worked in this area, alongside the National Nuclear laboratory. The knowledge gathered from these activities can usefully be re-chanelled into designing efficient extraction methodologies for the chemically-related rare earths. This is our intention. We will focus on the extraction of the rare-earth, Samarium, from waste high-powered magnets using ionic liquids as extractants. Our aim to to scale-up the chemical processes currently investigated by the Binnemans group in Leuven, Belgium. While we believe our general methodology can usefully be applied to many, disparate processes, our focus will be on three systems. Our proposal is firstly to study these systems at a molecular level, using molecular dynamics simulations, to understand the molecular structures that form during the extraction process. Secondly we shall use these insights to construct soundly based, reliable thermodynamic models so that we can predict system properties over a range of temperatures and compositions. Thirdly we will simulate and evaluate an industrial-scale extraction process, incorporating these models. Finally, one the basis of these models, we will liaise with the Binnemans group so that yet more optimised ionic liquids can be synthesised for rare earth extractions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::403d76551c05a6ed66acb9ed9194156e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::403d76551c05a6ed66acb9ed9194156e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2018 - 2021Partners:University of Sussex, University of Sussex, University of Leuven, University of LeuvenUniversity of Sussex,University of Sussex,University of Leuven,University of LeuvenFunder: UK Research and Innovation Project Code: EP/M022064/2Funder Contribution: 453,636 GBPRare-earth metals such as neodymium, terbium and dysprosium have unusual and highly desirable magnetic properties; some of their alloys are amongst the strongest known permanent magnets. Rare earth magnets have widespread applications in a range of settings, including computer hard-disk drives. Magnetic materials are particularly important for computing because they provide the means by which digital information is transferred to, stored within, and read from an information storage unit. The storage unit typically consists of a collection of magnetic domains, where ordering occurs across dimensions of hundreds of nanometres. The size of the magnetic domain is crucial because it determines the amount of information that can be stored and processed. One of the most important tasks facing society today is to find ways of dealing with so-called Big Data, the term used to describe digital information that occurs in vast amounts and is of an increasingly complex nature. Processing Big Data with conventional magnetic storage media will eventually prove to be impossible, hence the development of new information storage devices is the grand challenge. The key to success with this challenge is miniaturization, hence this project will develop a new generation of magnetic materials on the molecular scale, with dimensions of only a few nanometres. The molecular materials with which this project is concerned are known as single-molecule magnets (SMMs). In contrast to traditional permanent magnets, SMMs are discrete molecular nano-magnets that retain magnetization in ways that do not rely on interactions across large distances, hence they offer unique properties that have been proposed as the basis of ultrahigh-density information technology, with processing at unprecedentedly fast speeds. SMMs have also been proposed as the working components of nano-scale molecular spintronic devices. The drawback with SMMs is that all examples function only at liquid-helium temperatures: this project will develop SMMs that function at more practical temperatures, which will introduce the possibility of developing prototype devices. More broadly, achieving the aims of this project will make an important contribution towards advancing the EPSRC Nanoscale Design of Functional Materials Grand Challenge. The aims of the project will be achieved using innovative synthetic strategies based on molecular rare earth compounds in which the metal centres are linked by a series of novel magnetic organic groups. The key advance that will be enabled by this project will be with the magnetic organic linkers, which provide an innovative way of preventing the processes that otherwise switch off the magnetic memory of SMMs. An important feature of the molecular design process is the ability to change the magnetic properties at the atomic level by, for example, switching the atoms that connect the rare earth metals from phosphorus to arsenic, and from arsenic to other main group elements. Alternatively, a family of organic linkers with the capacity to change their magnetic moments via targeted chemical modifications have also been proposed, a strategy that will allow fine tuning of SMM properties. The experimental approach will be complemented by high-level theoretical calculations, which will provide detailed insight into the new SMMs and will provide a rational way of developing improved systems. Ultimately, we will develop SMMs that function at temperatures that can be reached by cooling with liquid nitrogen. Such materials would represent a step-change in molecular nanomagnetism, and would result in tremendous impact across the scientific community, with the potential to make impact more widely in society.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::fcd8103e5e238beb87fe3916990a52bb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::fcd8103e5e238beb87fe3916990a52bb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2018 - 2021Partners:UEA, KU Leuven, University of Leuven, University of LeuvenUEA,KU Leuven,University of Leuven,University of LeuvenFunder: UK Research and Innovation Project Code: EP/R042675/1Funder Contribution: 349,185 GBPPhotonic materials interact with light in useful and interesting ways. They enable its manipulation, and conversion into other forms of energy. One important class of photonic materials are non-linear optical (NLO) materials, which can be used to manipulate and adjust the properties of laser light beams. For example, they are used to make green lasers by second harmonic generation (SHG) from an infra-red source, and in electro-optic (EO) modulators that transfer digital electronic signals into fibre-optic telecommunications. At present, most commercial NLO materials are simple inorganic salts. These are inexpensive, durable and ideal for simple SHG applications. However, in telecommunications and computing they suffer from slow speed, as their responses originate from displacement of (relatively heavy) ions in response to the electric field of light. Molecular organic and metal-organic materials promise faster responses, because they arise from displacement of lighter, faster electrons, and also rational property tuning and the possibility of rapid property switching (i.e. on/off for optical or electrooptical transistors). But it is difficult to obtain molecules combining high NLO activity with adequate transparency and photostability, and adding the ability to reversibly switch between on/off states is a still greater challenge. Recently, we discovered a promising new class of molecular NLO materials based on polyoxometalates (POMs) - a type of molecular metal oxide cluster - connected to organic groups. These POM-based chromophores (POMophores) obtain high NLO coefficients from materials with small, stable organic groups and excellent transparency, and show redox properties that could be used to switch the NLO response. The next stage, addressed in this project, is to assemble POMophores into bulk materials that can be used in devices - specifically EO modulators and transistors. To do this, we must find a way to align all of the POMophores so that they point in the same direction and give a net NLO effect. This is challenging, as methods for controlled assembly of POM-based materials are currently very limited, and to achieve the goal we will develop a new approach where we first trap the POMophore in a molecular container. The molecular containers are designed in such a way that they form a film where the desired molecular orientation is forced on the POMophore. In addition to organising the POMophores to give bulk NLO properties, the containers will also protect them from degradation when we investigate redox-switching of the NLO response. POMs offer many other properties beyond non-linear optics - for example many POM clusters are excellent catalysts or photocatalysts due to their ability to rapidly accept and transfer electrons, some have magnetic and/or luminescence properties introduced by incorporating suitable heterometals into the POM framework, and POMs have also demonstrated anti-viral activity. Therefore, we expect that other areas of chemistry and materials science will benefit from methods enabling their encapsulation and control over their positioning on the nanoscale. Possibilities could include selective catalysis, solar energy conversion, memory devices, and even targeting of biologically/medicinally active POM species for therapeutic interventions. This project will lay the groundwork necessary for such developments, as well as potentially producing the new, high performance bulk NLO materials needed for future telecommunications and computing.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1b8fac9bf585082c84eafecc29ae7256&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1b8fac9bf585082c84eafecc29ae7256&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2015 - 2016Partners:KU Leuven, University of Liverpool, University of Leuven, University of LiverpoolKU Leuven,University of Liverpool,University of Leuven,University of LiverpoolFunder: UK Research and Innovation Project Code: ST/N002563/1Funder Contribution: 84,527 GBPThe elements we see around us, and that constituent our bodies, are predominantly stable, yet we know these were forged in violent astrophysical scenarios. The traces from this violent history can be found in sensational new detailed astronomical observations of element abundances from exploding stars, meteoritic inclusions attributed to condensation of material following single explosive events, and observations of gamma-ray emission indicating these process are still ongoing in our universe. The synthesis of the elements in these explosive scenarios involves nuclear reactions involving unstable nuclei. The unknown structure and reactions of these unstable nuclei critically affects our understanding of the origin of elements we now see in a relatively quiescent state around us, and the nature and dynamics of the stellar environments in which they formed. As we have begun to explore the properties of these nuclei, surprising results have been found on the evolution of shell structure, indicating what we find to be the case in stable nuclei, cannot be simply extrapolated to unstable systems. Nature is far more rich and diverse then we anticipated, leading to new shell structures driven by the underlying nature of the nuclear interaction. The locations of these shell structures are subtle and intimately associated with the shapes of nuclei. One such example are Pear-shaped nuclei exhibiting permanent static octupole deformations.These provide a very promising laboratory to search for finite atomic electric dipole moments, indicative of CP violation beyond the Standard Model of Particle Physics. The science described above requires precision measurements of the structure and reactions of unstable nuclei. Furthermore, the studies need to be performed in the appropriate energy regime where these properties can be best probed. The new TSR heavy ion storage ring will be located at the ISOLDE facility CERN. This will be a unique facility worldwide. ISOLDE is the world's leading facility for the production of radioactive beams. Following new upgrades, these radioactive beams will be accelerated to the energy range perfect for precision reaction studies. These beams will be injected into the storage ring where they can be rapidly cooled to give very high quality radioactive beams enabling ultra high resolution measurements. For heavy radioactive species, the beam extracted from the storage ring will be allied to a novel solenoidal magnet and detection system. The ISOL-SRS spectrometer systems proposed by the UK community for use in conjunction with the TSR storage ring will enable a major breakthrough in precision studies of the reactions and properties of unstable nuclei across the vast range of masses and isotopes produced by the ISOLDE radioactive beams facility, CERN.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::cf2c84f7026230b644ae82cdc9e23c24&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::cf2c84f7026230b644ae82cdc9e23c24&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2012Partners:UH, University of Sheffield, University of Leuven, [no title available], Catholic University LeuvenUH,University of Sheffield,University of Leuven,[no title available],Catholic University LeuvenFunder: UK Research and Innovation Project Code: NE/F018355/1Funder Contribution: 388,489 GBPDistinguishing group members from non-group members underlies a vast array of key animal behaviours, such as territoriality, altruism and mating. This requires variation in recognition signals but it is not known how this variation is maintained. Invertebrates, and many vertebrates, primarily use chemicals to encode information about an individual's species, sex, age or caste, in addition to alarm and trail pheromones. Ants are among the most dominant animals in the world and employ particularly rich forms of chemical communication since they are social, living in colonies containing tens to millions of individuals. Ants comprise five of the world's top seventeen most costly pest insects. Despite their importance as both beneficial and pest species, there is little knowledge about the recognition signals they employ. In fact, it was over 100 yrs ago that it was first suggested that ant recognition was based on chemical cues present in the waterproof layer that coats the outer surface of all insects. Very recently this has been confirmed by demonstrating that chemicals known as cuticular hydrocarbons found on the surface of Formica ants are indeed used in nest mate recognition. We will exploit this recent knowledge to study the genetic and environmental forces that underpin the maintenance of variation in ant recognition signals. To achieve this, we will conduct behavioural, biochemical, genetic and theoretical studies on the ant Formica exsecta and several of its close relatives. Formica ants are a keystone ant genus, comprising over 160 species, including the well-known mound-building wood ants and thus are one of the best studied groups of insects. Therefore, there is already a vast wealth of chemical, genetic, spatial and behavioural data, especially for F. exsecta, which has being studied over the past 15 years by Helsinki University with whom we are collaborating. To achieve our main aim we will conduct three parallel studies: 1) A biochemical investigation to track the production, transportation and eventual secretion of the key cuticular hydrocarbons (CHC) in F. exsecta. This will allow us to understand how and where an individual odour develops. 2) A study aimed at dissecting the genetic and environmental components of variability of the CHC (odour) used by F. exsecta and other Formica species. This will be achieved using the latest molecular tools. For the first time, we will construct a family tree within a single population for over 100 colonies to work out the heritability of the chemical cues. We will then produce a genetic map which will allow the genes that are involved in the production of the key hydrocarbons to be localised. We will test the role of candidate genes, using the genomes of the honeybee and Drosophila, and test for evidence of balancing selection on these genes. 3) Finally, using agent-based modelling we will investigate theoretically the evolution and maintenance of recognition cue variation (at individual, colony, species levels), within a spatial environment that can be subject to different conditions. We will use our empirical data to avoid previous problems associated with over-simplification of the system. In addition to being at the forefront of the rapidly emerging field of chemical ecology, this study helps in two key areas of UK insect conservation. Firstly, in the UK, F. exsecta is a Category 1 threatened species, so we will provide vital information and expertise to underpin the species' conservation. Secondly, understanding how environmental forces interact with genetic variation will provide new insights into the evolution and maintaince of recognition systems not only in ants but in many species of insects since the chemicals we are investigating are synthesised by almost all invertebrates.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e903b519c129af06a9bd4c2a3376c6fd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e903b519c129af06a9bd4c2a3376c6fd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right