
CRODA EUROPE LIMITED
CRODA EUROPE LIMITED
20 Projects, page 1 of 4
assignment_turned_in Project2020 - 2024Partners:PHE, DSTL, Robert Bosch (Germany), Milton Keynes Uni Hospital NHS Fdn Trust, ATACC group +75 partnersPHE,DSTL,Robert Bosch (Germany),Milton Keynes Uni Hospital NHS Fdn Trust,ATACC group,The Shadow Robot Company,CLAWAR Ltd,CLAWAR Ltd,Defence Science & Tech Lab DSTL,Sheffield Childrens NHS Foundation Trust,ATACC group,Milton Keynes Hospital,Welsh Ambulance Services NHS Trust,UWA,RAC Foundation for Motoring,National Metals Technology Centre,IAM RoadSmart,Thales Aerospace,Lero (The Irish Software Research Ctr),Connected Places Catapult,Kuka Ltd,KUKA Robotics UK Limited,GoSouthCoast,Chartered Inst of Ergo & Human Factors,AMRC,Health & Social Care Information Centre,National Institute of Informatics (NII),Lancashire and South Cumbira NHS Trust,University of York,Cyberselves Universal Limited,UNIVERSITY OF CENTRAL FLORIDA,Sheffield Childrens NHS Foundation Trust,University of York,Lancashire & South Cumbria NHS Fdn Trust,KUKA Robotics UK Limited,Resilient Cyber Security Solutions,THALES UK LIMITED,ADVANCED MANUFACTURING RESEARCH CENTRE,Ocado Technology,Consequential Robotics (to be replaced),Connected Places Catapult,Autonomous Drivers Alliance,Thales UK Limited,Robert Bosch GmbH,Lancashire Teaching Hospitals NHS Trust,Shadow Robot Company Ltd,CRODA EUROPE LTD,Lero,UCF,Resilient Cyber Security Solutions,Bradford Teaching Hospitals,Defence Science & Tech Lab DSTL,NHS Digital (previously HSCIC),Lancashire Teaching Hospitals NHS Trust,Cyberselves Universal Limited,Consequential Robotics Ltd,Croda (United Kingdom),Public Health England,Kompai Robotics,GoSouthCoast,RAC Foundation for Motoring,Bristol Robotics Laboratory (BRL),BRL,ClearSy,CRODA EUROPE LIMITED,Kompai Robotics,National Institute of Informatics,Welsh Ambulance Services NHS Trust,Autonomous Drivers Alliance,TechnipFMC (International),Ocado Technology,University of Western Australia,PUBLIC HEALTH ENGLAND,DHSC,IAM RoadSmart,ClearSy,Bradford Teaching Hosp NHS Found Trust,Bradford Teaching Hospitals,National Institute of Informatics,TechnipFMC (International)Funder: UK Research and Innovation Project Code: EP/V026747/1Funder Contribution: 3,063,680 GBPImagine a future where autonomous systems are widely available to improve our lives. In this future, autonomous robots unobtrusively maintain the infrastructure of our cities, and support people in living fulfilled independent lives. In this future, autonomous software reliably diagnoses disease at early stages, and dependably manages our road traffic to maximise flow and minimise environmental impact. Before this vision becomes reality, several major limitations of current autonomous systems need to be addressed. Key among these limitations is their reduced resilience: today's autonomous systems cannot avoid, withstand, recover from, adapt, and evolve to handle the uncertainty, change, faults, failure, adversity, and other disruptions present in such applications. Recent and forthcoming technological advances will provide autonomous systems with many of the sensors, actuators and other functional building blocks required to achieve the desired resilience levels, but this is not enough. To be resilient and trustworthy in these important applications, future autonomous systems will also need to use these building blocks effectively, so that they achieve complex technical requirements without violating our social, legal, ethical, empathy and cultural (SLEEC) rules and norms. Additionally, they will need to provide us with compelling evidence that the decisions and actions supporting their resilience satisfy both technical and SLEEC-compliance goals. To address these challenging needs, our project will develop a comprehensive toolbox of mathematically based notations and models, SLEEC-compliant resilience-enhancing methods, and systematic approaches for developing, deploying, optimising, and assuring highly resilient autonomous systems and systems of systems. To this end, we will capture the multidisciplinary nature of the social and technical aspects of the environment in which autonomous systems operate - and of the systems themselves - via mathematical models. For that, we have a team of Computer Scientists, Engineers, Psychologists, Philosophers, Lawyers, and Mathematicians, with an extensive track record of delivering research in all areas of the project. Working with such a mathematical model, autonomous systems will determine which resilience- enhancing actions are feasible, meet technical requirements, and are compliant with the relevant SLEEC rules and norms. Like humans, our autonomous systems will be able to reduce uncertainty, and to predict, detect and respond to change, faults, failures and adversity, proactively and efficiently. Like humans, if needed, our autonomous systems will share knowledge and services with humans and other autonomous agents. Like humans, if needed, our autonomous systems will cooperate with one another and with humans, and will proactively seek assistance from experts. Our work will deliver a step change in developing resilient autonomous systems and systems of systems. Developers will have notations and guidance to specify the socio-technical norms and rules applicable to the operational context of their autonomous systems, and techniques to design resilient autonomous systems that are trustworthy and compliant with these norms and rules. Additionally, developers will have guidance to build autonomous systems that can tolerate disruption, making the system usable in a larger set of circumstances. Finally, they will have techniques to develop resilient autonomous systems that can share information and services with peer systems and humans, and methods for providing evidence of the resilience of their systems. In such a context, autonomous systems and systems of systems will be highly resilient and trustworthy.
more_vert assignment_turned_in Project2021 - 2026Partners:Heriot-Watt University, Croda (United Kingdom), CRODA EUROPE LTD, CRODA EUROPE LIMITED, Heriot-Watt UniversityHeriot-Watt University,Croda (United Kingdom),CRODA EUROPE LTD,CRODA EUROPE LIMITED,Heriot-Watt UniversityFunder: UK Research and Innovation Project Code: BB/W51021X/1Funder Contribution: 110,574 GBPDoctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.
more_vert assignment_turned_in Project2021 - 2024Partners:University of Warwick, FeTu Ltd, CFMS Services Ltd, NEPIC, CRODA EUROPE LTD +97 partnersUniversity of Warwick,FeTu Ltd,CFMS Services Ltd,NEPIC,CRODA EUROPE LTD,EDGE Digital Manufacturing Limited,Industry Wales,Hartree Centre,University of Sheffield,Henry Royce Institute,Liberty Speciality Steels,VESUVIUS UK LTD,Mineral Products Association,Union Papertech Ltd,Tata Steel UK,University of Liverpool,Goodwin Steel Castings,Digital Catapult,EDGE Digital Manufacturing Limited,North East Process Industry ClusterNEPIC,Knowledge Centre for Materials Chemistry,N8 Research Partnership,Industry Wales,AkzoNobel,Glass Futures Ltd,Johnson Matthey Plc,British Ceramic Confederation,Union Papertech Ltd,North East Process Industry ClusterNEPIC,AkzoNobel UK,Northumbria University,British Ceramic Confederation,Building Research Establishment,Sheffield Hallam University,AkzoNobel UK,University of Sheffield,British Glass,Aluminium Federation Ltd,British Steel Ltd,Goodwin Steel Castings,North West Business Leadership Team,Sheffield Forgemasters Engineering Ltd,Johnson Matthey,Celsa Steel UK,BRE,IOM3,Henry Royce Institute,N8 Research Partnership,FeTu Ltd,Confederation of Paper Industries,Lucideon Ltd,University of Liverpool,Confederation of Paper Industries,University of Warwick,James Cropper Plc,Vesuvius UK,British Glass,British Coatings Federation,Policy Connect,Tata Steel,Imerys,Knowledge Centre for Materials Chemistry,Materials Processing Institute (MPI),Liberty Steel UK,Ferroday Ltd,British Glass,UK Steel,British Coatings Federation,Hartree Centre,[no title available],IoM3,Breedon Cement Ltd,Aluminium Federation Ltd,Northumbria University,Imerys,Mineral Products Association,Glass Futures Ltd,James Cropper Plc,CRODA EUROPE LIMITED,Johnson Matthey plc,UK Steel,Connected Digital Economy Catapult,Tata Steel (United Kingdom),Croda (United Kingdom),Building Research Establishment (BRE),Ferroday Ltd,Celsa Steel UK,CERAM Research,PYROPTIK INSTRUMENTS LIMITED,North West Business Leadership Team,LKAB Minerals Ltd,CFMS Services Ltd,Policy Connect,Sheffield Forgemasters Engineering Ltd,LKAB Minerals Ltd,Breedon Cement Ltd,Science and Technology Facilities Council,PYROPTIK INSTRUMENTS LIMITED,Materials Processing Institute (MPI),CFMS Ltd,SHU,British Steel LtdFunder: UK Research and Innovation Project Code: EP/V026402/1Funder Contribution: 2,259,080 GBPThe UK Foundation Industries (Glass, Metals, Cement, Ceramics, Bulk Chemicals and Paper), are worth £52B to the UK economy, produce 28 million tonnes of materials per year and account for 10% of the UK total CO2 emissions. These industries face major challenges in meeting the UK Government's legal commitment for 2050 to reduce net greenhouse gas emissions by 100% relative to 1990, as they are characterised by highly intensive use of both resources and energy. While all sectors are implementing steps to increase recycling and reuse of materials, they are at varying stages of creating road maps to zero carbon. These roadmaps depend on the switching of the national grid to low carbon energy supply based on green electricity and sustainable sources of hydrogen and biofuels along with carbon capture and storage solutions. Achievement of net zero carbon will also require innovations in product and process design and the adoption of circular economy and industrial symbiosis approaches via new business models, enabled as necessary by changes in national and global policies. Additionally, the Governments £4.7B National Productivity Investment Fund recognises the need for raising UK productivity across all industrial sectors to match best international standards. High levels of productivity coupled with low carbon strategies will contribute to creating a transformation of the foundation industry landscape, encouraging strategic retention of the industries in the UK, resilience against global supply chain shocks such as Covid-19 and providing quality jobs and a clean environment. The strategic importance of these industries to UK productivity and environmental targets has been acknowledged by the provision of £66M from the Industrial Strategy Challenge Fund to support a Transforming Foundation Industries cluster. Recognising that the individual sectors will face many common problems and opportunities, the TFI cluster will serve to encourage and facilitate a cross sectoral approach to the major challenges faced. As part of this funding an Academic Network Plus will be formed, to ensure the establishment of a vibrant community of academics and industry that can organise and collaborate to build disciplinary and interdisciplinary solutions to the major challenges. The Network Plus will serve as a basis to ensure that the ongoing £66M TFI programme is rolled out, underpinned by a portfolio of the best available UK interdisciplinary science, and informed by cross sectoral industry participation. Our network, initially drawn from eight UK universities, and over 30 industrial organisations will support the UK foundation industries by engaging with academia, industry, policy makers and non-governmental organisations to identify and address challenges and opportunities to co-develop and adopt transformative technologies, business models and working practices. Our expertise covers all six foundation industries, with relevant knowledge of materials, engineering, bulk chemicals, manufacturing, physical sciences, informatics, economics, circular economy and the arts & humanities. Through our programme of mini-projects, workshops, knowledge transfer, outreach and dissemination, the Network will test concepts and guide the development of innovative outcomes to help transform UK foundation industries. The Network will be inclusive across disciplines, embracing best practice in Knowledge Exchange from the Arts and Humanities, and inclusive of the whole UK academic and industrial communities, enabling access for all to the activity programme and project fund opportunities.
more_vert assignment_turned_in Project2021 - 2024Partners:Celsa Steel UK, Encirc Ltd, Morgan Advanced Materials, International Synergies Ltd, IoM3 +127 partnersCelsa Steel UK,Encirc Ltd,Morgan Advanced Materials,International Synergies Ltd,IoM3,Norton Aluminium Ltd,Siemens plc (UK),URM (UK) Limited,CLT Carbon Limiting Technologies,AMETEK (UK),Greenology (Teeside) Limited,North East Process Industry ClusterNEPIC,AkzoNobel UK,Cranfield University,NWL,Cast Metals Federation,EnergyNest AS,North East Process Industry ClusterNEPIC,Fives Stein Limited,Jayplas (J&A Young (Leicester) Ltd),Diageo plc,Croda (United Kingdom),British Glass,SIEMENS PLC,Encirc Ltd,Aluminium Federation Ltd,Confederation of Paper Industries,NSG Group (UK),EnergyNest AS,LafargeHolcim,Trent Refractories Ltd,Bunting Magnetics Europe (UK),Sheffield Refractories Ltd,Beatson Clark Limited,NEPIC,Society of Glass Technology,Celsa Steel UK,British Glass,Glass Technology Services Ltd GTS,AMETEK UK,Materials Processing Institute (MPI),British Ceramic Confederation,Almath Crucibles Ltd,Mineral Products Association,CRODA EUROPE LIMITED,IS-Instruments Ltd,F.I.C (UK) Limited,Emerson Advanced Design Center,F.I.C (UK) Limited,Chemical Industries Association Ltd,Industry Wales,CRODA EUROPE LTD,Glass Technology Services Ltd GTS,NSG Holding (Europe) Limited,Saica Paper UK Ltd,Guardian Industries (International),Power Minerals Ltd,Emerson Advanced Design Center,Confederation of Paper Industries,Greenology (Teeside) Limited,British Ceramic Confederation,Kimberly-Clark Limited (UK),Power Minerals Ltd,Saint Gobain Glass Industry,Breedon Cement Ltd,AkzoNobel,Glass Futures Ltd,ANSYS,Heraeus Electro-Nite,Capital Refractories Limited,International Synergies Ltd,NETZSCH (UK),Texon (UK),Zentia (Ceiling Solutions Limited) (UK),Jayplas (J&A Young (Leicester) Ltd),Netzsch Instruments,Texon (UK),Capital Refractories Limited,Breedon Cement Ltd,Diageo plc,Saint Gobain Glass Industry,Imerys,Heraeus Electro-Nite,Glass Futures Ltd,Sheffield Refractories Ltd,Norton Aluminium Ltd,Guardian Industries (International),Modern Built Environment,Liberty House Group (UK),Saica Paper UK Ltd,Beatson Clark Limited,Imerys Minerals Ltd,Hanson Heidelberg Cement Group,Aluminium Federation Ltd,CLT Carbon Limiting Technologies,KNOWLEDGE TRANSFER NETWORK LIMITED,[no title available],Knowledge Transfer Network,Lucideon Ltd,Magnet Applications Ltd,Society of Glass Technology,Morgan Crucible,CRANFIELD UNIVERSITY,Cast Metals Federation,Materials Processing Institute (MPI),IOM3,Industry Wales,Fives Stein Limited,Northumbrian Water Group plc,LafargeHolcim,AkzoNobel UK,Luxfer MEL Technologies,Alpek Polyester UK Ltd,Catal International Ltd,Ansys UK Ltd,Constellium UK Ltd,VESUVIUS UK LTD,Constellium UK Ltd,Kimberly-Clark Limited (UK),URM (UK) Limited,Alpek Polyester UK Ltd,Mineral Products Association,Vesuvius UK,Morgan Advanced Materials plc (UK),IS-Instruments Ltd,Catal International Ltd,British Glass,Almath Crucibles Ltd,Zentia (Ceiling Solutions Limited) (UK),CERAM Research,Chemical Industries Association Ltd,Liberty House Group (UK)Funder: UK Research and Innovation Project Code: EP/V054627/1Funder Contribution: 4,836,820 GBPThe Transforming the Foundation Industries Challenge has set out the background of the six foundation industries; cement, ceramics, chemicals, glass, metals and paper, which produce 28 Mt pa (75% of all materials in our economy) with a value of £52Bn but also create 10% of UK CO2 emissions. These materials industries are the root of all supply chains providing fundamental products into the industrial sector, often in vertically-integrated fashion. They have a number of common factors: they are water, resource and energy-intensive, often needing high temperature processing; they share processes such as grinding, heating and cooling; they produce high-volume, often pernicious waste streams, including heat; and they have low profit margins, making them vulnerable to energy cost changes and to foreign competition. Our Vision is to build a proactive, multidisciplinary research and practice driven Research and Innovation Hub that optimises the flows of all resources within and between the FIs. The Hub will work with communities where the industries are located to assist the UK in achieving its Net Zero 2050 targets, and transform these industries into modern manufactories which are non-polluting, resource efficient and attractive places to be employed. TransFIRe is a consortium of 20 investigators from 12 institutions, 49 companies and 14 NGO and government organisations related to the sectors, with expertise across the FIs as well as energy mapping, life cycle and sustainability, industrial symbiosis, computer science, AI and digital manufacturing, management, social science and technology transfer. TransFIRe will initially focus on three major challenges: 1 Transferring best practice - applying "Gentani": Across the FIs there are many processes that are similar, e.g. comminution, granulation, drying, cooling, heat exchange, materials transportation and handling. Using the philosophy Gentani (minimum resource needed to carry out a process) this research would benchmark and identify best practices considering resource efficiencies (energy, water etc.) and environmental impacts (dust, emissions etc.) across sectors and share information horizontally. 2 Where there's muck there's brass - creating new materials and process opportunities. Key to the transformation of our Foundation Industries will be development of smart, new materials and processes that enable cheaper, lower-energy and lower-carbon products. Through supporting a combination of fundamental research and focused technology development, the Hub will directly address these needs. For example, all sectors have material waste streams that could be used as raw materials for other sectors in the industrial landscape with little or no further processing. There is great potential to add more value by "upcycling" waste by further processes to develop new materials and alternative by-products from innovative processing technologies with less environmental impact. This requires novel industrial symbioses and relationships, sustainable and circular business models and governance arrangements. 3 Working with communities - co-development of new business and social enterprises. Large volumes of warm air and water are produced across the sectors, providing opportunities for low grade energy capture. Collaboratively with communities around FIs, we will identify the potential for co-located initiatives (district heating, market gardening etc.). This research will highlight issues of equality, diversity and inclusiveness, investigating the potential from societal, environmental, technical, business and governance perspectives. Added value to the project comes from the £3.5 M in-kind support of materials and equipment and use of manufacturing sites for real-life testing as well as a number of linked and aligned PhDs/EngDs from HEIs and partners This in-kind support will offer even greater return on investment and strongly embed the findings and operationalise them within the sector.
more_vert assignment_turned_in Project2022 - 2026Partners:University of York, Croda (United Kingdom), University of York, CRODA EUROPE LTD, CRODA EUROPE LIMITEDUniversity of York,Croda (United Kingdom),University of York,CRODA EUROPE LTD,CRODA EUROPE LIMITEDFunder: UK Research and Innovation Project Code: BB/W510233/1Funder Contribution: 110,821 GBPDoctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.
more_vert
chevron_left - 1
- 2
- 3
- 4
chevron_right