
Siemens AG
Siemens AG
2 Projects, page 1 of 1
assignment_turned_in Project2019 - 2028Partners:UNIL, Optellum Ltd, HeartFlow (United States), SU, Brainminer +81 partnersUNIL,Optellum Ltd,HeartFlow (United States),SU,Brainminer,NIHR Imperial Biomedical Research Centre,Memorial Sloan- Kettering Cancer Centre,Nagoya University,Brigham and Women's Hospital,Ultromics Ltd,HKU,Perspectum Diagnostics,ASTRAZENECA UK LIMITED,NIHR Imperial Biomedical Research Centre,GlaxoSmithKline PLC,Mirada Medical (United Kingdom),QUIBIM,Therapanacea,PHILIPS MEDICAL SYSTEMS NEDERLAND BV,HeartFlow Inc.,TheraPanacea,Medicines Discovery Catapult,Massachusetts General Hospital East,AstraZeneca plc,General Electric (United Kingdom),GE Healthcare,Ultromics Ltd,Optellum Ltd,GSTT NIHR Biomedical Research Centre,Medicines Discovery Catapult,Stanford University,icoMetrix,AKH,Theragnostics Ltd,German Cancer Research Center,Perspectum Diagnostics,Philips (Netherlands),Radiologics Inc,NVIDIA Limited (UK),GSTT NIHR Biomedical Research Centre,National Institute for Health Research,Stanford University,Xtronics Ltd.,AstraZeneca (United Kingdom),Massachusetts Institute of Technology,Lightpoint Medical (United Kingdom),Radiologics,Massachusetts Institute of Technology,South London and Maudsley NHS Foundation Trust,German Cancer Research Centre,MR Code BV,PHILIPS MEDICAL SYSTEMS NEDERLAND,Graduiertenkolleg BIOQIC,Biotronics 3D (United Kingdom),Biotronics 3D Ltd,Brigham and Women's Hospital,Brainminer,NVIDIA Limited,GlaxoSmithKline (United Kingdom),King's College Hospital Charitable Trust,Image Analysis Group,Graduiertenkolleg BIOQIC,GSK,Massachusetts General Hospital East,GE Healthcare,Memorial Sloan Kettering Cancer Center,Xtronics Ltd.,Icometrix (Belgium),Image Analysis Ltd (UK),IMANOVA LIMITED,Imanova Limited,KCL,Mirada Medical UK,Theragnostics Ltd,University of Copenhagen,quibim,Siemens Healthcare (Germany),NIHR Imperial Biomedical Research Centre,King's College Hospital,Siemens AG,MR Code BV,Massachusetts Institute of Technology,Lightpoint Medical Ltd,South London and Maudsley NHS Trust,University of Copenhagen,Medicines Discovery CatapultFunder: UK Research and Innovation Project Code: EP/S022104/1Funder Contribution: 6,339,630 GBPMedical imaging has made major contributions to healthcare, by providing noninvasive diagnostics, guidance, and unparalleled monitoring of treatment and understanding of disease. A suite of multimodal imaging modalities is nowadays available, and scanner hardware technology continues to advance, with high-field, hybrid, real-time and hand-held imaging further pushing on technological boundaries; furthermore, new developments of contrast agents and radioactive tracers open exciting new avenues in designing more targeted molecular imaging probes. Conventionally, the individual imaging components of probes and contrast mechanisms, acquisition and reconstruction, and analysis and interpretation are addressed separately. This however, is creating unnecessary silos between otherwise highly synergistic disciplines, which our current EPSRC CDT in Medical Imaging at King's College London and Imperial College London has already started to successfully challenge. Our new CDT will push this even further by bridging the different imaging disciplines and clinical applications, with the interdisciplinary research based on complementary collaborations and new research directions that would not have been possible five years ago. Through a comprehensive, integrated training programme in Smart Medical Imaging we will train the next generation of medical imaging researchers that is needed to reach the full potential of medical imaging through so-called "smart" imaging technologies. To achieve this ambitious goal we have developed four new Scientific Themes which are synergistically interlinked: AI-enabled Imaging, Smart Imaging Probes, Emerging Imaging and Affordable Imaging. This is complemented by a dedicated 1+3 training programme, with a new MRes in Healthcare Technologies at King's as the foundation year, strong industry links in form of industry placements, careers mentoring and workshops, entrepreneurship training, and opportunities in engaging with international training programmes and academic labs to become part of a wider cohort. Cohort building, Responsible Research & Innovation, Equality, Diversity & Inclusion, and Public Engagement will be firmly embedded in this programme. Students graduating from this CDT will have acquired a broad set of scientific and transferable skills that will enable them to work across the different medical imaging sub-disciplines, gaining a high employability over wider sectors.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d92a92264274074e2d11e144e295355f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d92a92264274074e2d11e144e295355f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2023Partners:Precision Acoustics (United Kingdom), Mediso, Mirada Solutions, Medtronic, Olea Medical (France) +113 partnersPrecision Acoustics (United Kingdom),Mediso,Mirada Solutions,Medtronic,Olea Medical (France),Hamamatsu Photonics UK Ltd,Beijing Normal University,Vision RT Ltd,Great Ormond Street Hospital,IXICO Ltd,University of Pennsylvania,UU,Fujifilm Visualsonics Inc,Siemens (United States),Hitachi Ltd,Elekta UK Ltd,MR Solutions Limited,Creatv MicroTech (United States),Yale University,Alzheimer's Research UK,Alzheimer’s Research UK,General Electric (United Kingdom),French Institute for Research in Computer Science and Automation,Fujifilm Visualsonics Inc,Brain Products GmbH,The Francis Crick Institute,University College London Hospitals,Bruker (United Kingdom),Yale University,Cancer Research UK,Siemens AG,Microsoft (United States),Alzheimer's Society,Olea Medical,Danish Research Centre for Magnetic Reso,University College London Hospital (UCLH) NHS Foundation Trust,RAPID Biomedical GmbH,Alzheimer's Society,Brain Products GmbH,Agency for Science Technology-A Star,UCL,Medtronic (United States),GE Healthcare,IXICO Technologies Ltd,INRIA Sophia-Antipolis,WF,Microsoft Research,Imaging Equipment Ltd,Agency for Science, Technology and Research,Teraview Ltd,Child Health Research Appeal Trust,CANCER RESEARCH UK,Agilent Technologies (United Kingdom),Siemens AG,Dexela Ltd,Precision Acoustics (United Kingdom),Samsung (South Korea),Rigaku,Beijing Normal University,Millennium the Takeda Oncology Company,Hitachi (Japan),Renishaw (United Kingdom),Rigaku (United States),The Francis Crick Institute,Samsung Advanced Institute of Technology,Vision RT Ltd,Renishaw plc (UK),Great Ormond Street Hospital Children's Charity,The Francis Crick Institute,Netherlands Cancer Institute,Moorfields Eye Hospital NHS Foundation Trust,Pelican Cancer Foundation,Siemens (United Kingdom),Bruker UK Ltd,ESI (United States),GE Healthcare,Pelican Cancer Foundation,Imperial Cancer Research Fund,Icometrix (Belgium),Mediso,Hvidovre Hospital,Moorfields Eye NHS Foundation Trust,Pulseteq Ltd,Philips Healthcare (Global),Siemens AG (International),Hamamatsu Photonics (United Kingdom),Dexela Ltd,ESI Group,Bruker UK Ltd,RENISHAW,icoMetrix,TeraView (United Kingdom),PerkinElmer (United Kingdom),PULSETEQ LIMITED,Huntington's Disease Association,Creatv MicroTech (United States),University of Utah,University of Pennsylvania,Philips (Netherlands),Blackford Analysis Ltd,Lightpoint Medical (United Kingdom),MR Solutions Limited,Blackford Analysis Ltd,Takeda (United States),Wolfson Foundation,Philips Healthcare,Mirada Solutions,Teraview Ltd,Antoni van Leeuwenhoek Hospital,Danish Research Centre for Magnetic Reso,University College Hospital,RAPID Biomedical (Germany),Agilent Technologies (United Kingdom),Child Health Research Appeal Trust,Imaging Equipment Limited,Lightpoint Medical Ltd,The Huntington's Disease Association,Elekta (United Kingdom)Funder: UK Research and Innovation Project Code: EP/L016478/1Funder Contribution: 5,797,790 GBPMedical imaging has transformed clinical medicine in the last 40 years. Diagnostic imaging provides the means to probe the structure and function of the human body without having to cut open the body to see disease or injury. Imaging is sensitive to changes associated with the early stages of cancer allowing detection of disease at a sufficient early stage to have a major impact on long-term survival. Combining imaging with therapy delivery and surgery enables 3D imaging to be used for guidance, i.e. minimising harm to surrounding tissue and increasing the likelihood of a successful outcome. The UK has consistently been at the forefront of many of these developments. Despite these advances we still do not know the most basic mechanisms and aetiology of many of the most disabling and dangerous diseases. Cancer survival remains stubbornly low for many of the most common cancers such as lung, head and neck, liver, pancreas. Some of the most distressing neurological disorders such as the dementias, multiple sclerosis, epilepsy and some of the more common brain cancers, still have woefully poor long term cure rates. Imaging is the primary means of diagnosis and for studying disease progression and response to treatment. To fully achieve its potential imaging needs to be coupled with computational modelling of biological function and its relationship to tissue structure at multiple scales. The advent of powerful computing has opened up exciting opportunities to better understand disease initiation and progression and to guide and assess the effectiveness of therapies. Meanwhile novel imaging methods, such as photoacoustics, and combinations of technologies such as simultaneous PET and MRI, have created entirely new ways of looking at healthy function and disturbances to normal function associated with early and late disease progression. It is becoming increasingly clear that a multi-parameter, multi-scale and multi-sensor approach combining advanced sensor design with advanced computational methods in image formation and biological systems modelling is the way forward. The EPSRC Centre for Doctoral Training in Medical Imaging will provide comprehensive and integrative doctoral training in imaging sciences and methods. The programme has a strong focus on new image acquisition technologies, novel data analysis methods and integration with computational modelling. This will be a 4-year PhD programme designed to prepare students for successful careers in academia, industry and the healthcare sector. It comprises an MRes year in which the student will gain core competencies in this rapidly developing field, plus the skills to innovate both with imaging devices and with computational methods. During the PhD (years 2 to 4) the student will undertake an in-depth study of an aspect of medical imaging and its application to healthcare and will seek innovative solutions to challenging problems. Most projects will be strongly multi-disciplinary with a principle supervisor being a computer scientist, physicist, mathematician or engineer, a second supervisor from a clinical or life science background, and an industrial supervisor when required. Each project will lie in the EPSRC's remit. The Centre will comprise 72 students at its peak after 4 years and will be obtaining dedicated space and facilities. The participating departments are strongly supportive of this initiative and will encourage new academic appointees to actively participate in its delivery. The Centre will fill a significant skills gap that has been identified and our graduates will have a major impact in academic research in his area, industrial developments including attracting inward investment and driving forward start-ups, and in advocacy of this important and expanding area of medical engineering.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2b0503f80b56fc6c6a8b619775b1819c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2b0503f80b56fc6c6a8b619775b1819c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu