Powered by OpenAIRE graph
Found an issue? Give us feedback

Ecole Normale Superieure

Ecole Normale Superieure

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/W027194/1
    Funder Contribution: 1,009,750 GBP

    When we learnt classical thermodynamics from undergraduate physics/chemistry, we often assumed a large number of particles ~10^23, equilibrium, and quasi-static process. In this very restrictive limit, thermodynamic quantities such as heat dissipation Q, can be computed using the textbook formula Q= T\Delta S, where S is the configurational entropy. However, in real lives, most physical processes are neither quasi-static nor equilibrium. Furthermore, in many biological systems, the number of degrees of freedom is also much less than 10^23, and in this regime, thermal fluctuations become important. Thus, thermodynamic quantities such as heat, work and entropy need to be redefined properly (Stochastic Thermodynamics). The first aim of this research is to extend the theory of stochastic thermodynamics to include birth and death process, e.g., cellular division and apoptosis in living tissues and growing bacterial colonies. One important application of stochastic thermodynamics is the prospects of biological machines, which are powered by the swimming motility in some bacteria, or even cellular division and apoptosis in our bodies. For instance, it has been well known experimentally and theoretically that if we place an asymmetric cog inside a bath full of swimming bacteria, the cog can somehow rotate persistently in one direction. The bacteria themselves, in the absence of the cog, swim in a completely random direction; and yet the interaction between the bacteria and the asymmetric cog can break time reversal symmetry to create a macroscopic unidirectional current. Although this phenomenon has been well established in motile active matter (such as swimming bacteria), very little is known about non-motile growing active matter (such as cell division and apoptosis in living tissues and bacterial colonies). In this research, I will explore cellular division and apoptosis as a new route to the development of biological machines. This is important because unlike cell motility, cell division and apoptosis are universal properties of living matter. My design principles for such machines will pave the way for future possible applications in healthcare technologies and tissue engineering, such controlling the growth of tissue using non-uniform scaffolding. Finally, I will investigate the thermodynamic properties of these machines. In particular, I will quantify the informatic entropy production of the birth and death process inside biological tissues and bacterial colonies, i.e., particles dividing into two and disappearing elsewhere. To achieve this, I will extend the current theory of stochastic thermodynamics to include birth and death process and stochastic processes that are much faster than quasi-static (i.e., quenching). This information will be crucial in understanding how time reversal symmetry breaking at small scales (i.e., cell cycle) can be translated into large scales (i.e., collective motion in tissues and bacterial colonies). Apart from obvious applications to active/living matter, my research will also help to transform the science of thermodynamics, such as understanding the energy flow in a quenching process and/or processes close to a critical point, where thermal fluctuations are important.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V001914/1
    Funder Contribution: 7,671,800 GBP

    Development of materials has underpinned human and societal development for millennia, and such development has accelerated as time has passed. From the discovery of bronze through to wrought iron and then steel and polymers the visible world around has been shaped and built, relying on the intrinsic properties of these materials. In the 20th century a new materials revolution took place leading to the development of materials that are designed for their electronic (e.g. silicon), optical (e.g. glass fibres) or magnetic (e.g. recording media) properties. These materials changed the way we interact with the world and each other through the development of microelectronics (computers), the world wide web (optical fibre communications) and associated technologies. Now, two decades into the 21st century, we need to add more functionality into materials at ever smaller length-scales in order to develop ever more capable technologies with increased energy efficiency and at an acceptable manufacturing cost. In pursuing this ambition, we now find ourselves at the limit of current materials-processing technologies with an often complex interdependence of materials properties (e.g. thermal and electronic). As we approach length scales below 100s of nanometres, we have to harness quantum effects to address the need for devices with a step-change in performance and energy-efficiency, and ultimately for some cases the fundamental limitations of quantum mechanics. In this programme grant we will develop a new approach to delivering material functionalisation based on Nanoscale Advanced Materials Engineering (NAME). This approach will enable the modification of materials through the addition (doping) of single atoms through to many trillions with extreme accuracy (~20 nanometres, less than 1000th the thickness of a human hair). This will allow us to functionalise specifically a material in a highly localised location leaving the remaining material available for modification. For the first time this will offer a new approach to addressing the limitations faced by existing approaches in technology development at these small length scales. We will be able to change independently a material's electronic and thermal properties on the nanoscale, and use the precise doping to deliver enhanced optical functionality in engineered materials. Ambitiously, we aim to use NAME to control material properties which have to date proven difficult to exploit fully (e.g. quantum mechanical spin), and to control states of systems predicted but not yet directly experimentally observed or controlled (e.g. topological surface states). Ultimately, we may provide a viable route to the development of quantum bits (qubits) in materials which are a pre-requisite for the realisation of a quantum computer. Such a technology, albeit long term, is predicted to be the next great technological revolution NAME is a collaborative programme between internationally leading UK researchers from the Universities of Manchester, Leeds and Imperial College London, who together lead the Henry Royce Institute research theme identified as 'Atoms to Devices'. Together they have already established the required substantial infrastructure and state-of-the-art facilities through investment from Royce, the EPSRC and each University partner. The programme grant will provide the resource to assemble the wider team required to deliver the NAME vision, including UK academics, research fellows, and postdoctoral researchers, supported by PhD students funded by the Universities. The programme grant also has significant support from wider academia and industry based both within the UK and internationally.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.