Powered by OpenAIRE graph
Found an issue? Give us feedback

LIFETEC GROUP

LIFETEC GROUP BV
Country: Netherlands
13 Projects, page 1 of 3
  • Funder: European Commission Project Code: 863087
    Overall Budget: 2,876,130 EURFunder Contribution: 2,876,130 EUR

    Every year, 800.000 babies are born extremely preterm (EP; <28 weeks of age) worldwide. A large proportion of survivors from this group of smallest infants face lifelong disabilities, including breathing, cardiac, neurological and metabolic problems. Current treatment requires the preterm initiation of body functions for which the respective organs are not prepared. This affects primarily the lungs which need to provide gas-exchange under air (i.e. oxygen-based mechanical ventilation), and the gut, which is needed for energy and nutrition. This approach causes major therapy-related morbidity such as bronchopulmonary dysplasia, necrotizing enterocolitis and germinal matrix bleeding. The Perinatal Life Support (PLS) consortium envisions a medical device that can support the safe development of EP infants outside the womb by preserving the innate fetal cardiorespiratory physiology ex vivo, with the following enabling technologies: 1. A liquid-based environment with oxygen and nutrient exchange using an ´artificial placenta´; 2. Continuous and non-invasive monitoring of fetal parameters such as heart rate and oxygenation; 3. Computational models for fast and objective clinical decision support based on physiological data input; 4. A fetal manikin that can accurately simulate EP infants in an intensive care setting. The PLS project will be carried out by an interdisciplinary group of academia and industry with experience in modelling, monitoring, engineering, obstetrics and neonatology. The technology underlying PLS is applicable to conditions where ex vivo life support is required e.g. organ perfusion, regeneration and transplantation. The integrated system will allow major progress towards translation for an urgent medical need, where new solutions are lacking as preclinical models are inadequate and clinical trials not feasible. Innovative simulation technology will enable technical validation of PLS, with demonstration of functionality in a final Proof-of-Principle.

    more_vert
  • Funder: European Commission Project Code: 675451
    Overall Budget: 4,938,220 EURFunder Contribution: 4,938,220 EUR

    This Centre of Excellence will advance the role of computationally based modelling and simulation within biomedicine. Three related user communities lie at the heart of the CoE: academic, industrial and clinical researchers who all wish to build, develop and extend such capabilities in line with the increasing power of high performance computers. Three distinct exemplar research areas will be pursued: cardiovascular, molecularly-based and neuro-musculoskeletal medicine. Predictive computational biomedicine involves applications that are comprised of multiple components, arranged as far as possible into automated workflows in which data is taken, from an individual patient, processed, and combined into a model which produces predicted health outcomes. Many of the models are multiscale, requiring the coupling of two or more high performance codes. Computational biomedicine holds out the prospect of predicting the effect of personalised medical treatments and interventions ahead of carrying them out, with all the ensuing benefits. Indeed, in some cases, it is already doing so today. The CoE presents a powerful consortium of partners and has an outward facing nature and will actively train, disseminate and engage with these user communities across Europe and beyond. Because this field is new and growing rapidly, it offers numerous innovative opportunities. There are three SMEs and three enterprises within the project, as well as eight associate partners drawn from across the biomedical sector, who are fully aware of the vast potential of HPC in this domain. We shall work with them to advance the exploitation of HPC and will engage closely with medical professionals through our partner hospitals in order to establish modeling and simulation as an integral part of clinical decision making. Our CoE is thus user-driven, integrated, multidisciplinary, and distributed; presenting a vision that is in line with the Work Programme.

    more_vert
  • Funder: European Commission Project Code: 310389
    more_vert
  • Funder: European Commission Project Code: 642458
    Overall Budget: 3,835,200 EURFunder Contribution: 3,835,200 EUR

    MUltiSectoral Integrative approaches to CArdiac care – MUSICARE - is proposed by a team of universities, companies and hospitals from 4 EU countries (Italy, United Kingdom, The Netherlands, Belgium). The main scope of MUSICACARE is to structure a new trans-sectoral and multidisciplinary network capable of developing research and technology with no barriers between academia, industries and clinicians in the cardiac arena, and of shaping young researchers with a novel and truly multidisciplinary mindset, capable of developing clinical- and business-oriented technology including tools for the advancement of base knowledge. MUSICARE activity will impact on the field of cardiac surgery in three ways: i) from a scientific standpoint, new knowledge will be gained regarding the response of tissues to their surgical reshaping, to the implantation of devices and to drugs; ii) from a technological standpoint, new technologies will be developed to improve the design and generation of new clinical solutions, the clinical training, and image-based diagnosis and prognosis; iii) from an educational standpoint, a new paradigm of PhD track will be implemented, which will combine academic research in the field of biomedical engineering with industrial research activities and with on-the-field activity within clinical infrastructures. This novel PhD track will be accessed by 15 Early Stage Researchers (ESRs) recruited in the project by universities (7) and companies (8).

    more_vert
  • Funder: European Commission Project Code: 101072766
    Funder Contribution: 2,692,170 EUR

    The increased longevity in developed countries not necessarily goes hand in hand with amelioration of health and quality of life. Musculoskeletal, cardiovascular and neurodegenerative failure are not only hallmarks of the physical and cognitive decline in elderly people, but also represent common traits in several early-onset hereditary connective tissue (CT) disorders. These disorders represent a unique tool for the molecular investigation of such age-related pathologies due to the specific genetic disturbance of cellular homeostasis. The scientific objectives of CHANGE are: (i) to investigate CT disorders to identify key pathways responsible for age-related decline of physiological functions, being aware of gender differences (ii) to learn more about the interdependency of these pathways leading to stereotypic cellular responses including cellular senescence. This knowledge will pave the way for developing innovative treatment strategies for common diseases and frailty associated with ageing. To this end, we will train and establish a network of 10 highly-skilled doctoral candidates (DC) equipped with scientific expertise, transferable skills and societal and environment awareness as a foundation for their future careers. To succeed, CHANGE has built a unique and multidisciplinary network of 7 renowned academic partners and 5 companies (including 2 non-academics as associated partners) working together to train 10 young scientists. The DC network will address the basic biology of ageing from an interdisciplinary perspective, by deeply investigating CT diseases to uncover the pillars of ageing and its multi-systemic signatures. Altogether, CHANGE will provide an integrative map of cellular/extracellular consequences of age-related changes in cartilage, bone, muscle and vasculature as consequences to precocious disease exposure.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.