
University of Paris 9 Dauphine
University of Paris 9 Dauphine
2 Projects, page 1 of 1
assignment_turned_in Project2021 - 2024Partners:University of Bath, University of Paris, Federal University of Minas Gerais, Federal University of Minas Gerais, University of Paris 9 Dauphine +5 partnersUniversity of Bath,University of Paris,Federal University of Minas Gerais,Federal University of Minas Gerais,University of Paris 9 Dauphine,Nat Inst for Pure and App Mathematics,University of Bath,Paris Dauphine University,IMPA,IMPAFunder: UK Research and Innovation Project Code: EP/V00929X/1Funder Contribution: 293,008 GBPRandom motions in random media have been intensively studied for over forty years and many interesting features of these models have been discovered. The aim is to understand the motion of a particle in a turbulent media. Most of the work has been focused on the case where the particle evolves in a static random environment, for which slow-downs and trapping phenomena have been proved. More recently, mathematicians and physicists have been interested in the case of dynamic random environments, where the media can fluctuate with time. Random walks on the exclusion process is probably the canonical model for the field. Much less is known on this model, but exciting conjectures and questions have been made. Some of the most challenging questions concern the possibility of super-diffusive regimes, and the existence of effective traps along the trajectory of the walk. In this project, we aim at, on one hand, adapt the techniques recently developped in one dimension to the multi-dimensional model and, on the other hand, understand the presence or absence of atypical behaviors for this model.
more_vert assignment_turned_in Project2019 - 2027Partners:The Alan Turing Institute, Samsung Electronics Research Institute, Washington University in St. Louis, AIMS Rwanda, Regents of the Univ California Berkeley +118 partnersThe Alan Turing Institute,Samsung Electronics Research Institute,Washington University in St. Louis,AIMS Rwanda,Regents of the Univ California Berkeley,Select Statistical Services,Tencent,Microsoft Research Ltd,Cogent Labs,BP (UK),Winnow Solutions Limited,MICROSOFT RESEARCH LIMITED,Facebook UK,Element AI,Cervest Limited,Albora Technologies,CMU,EPFL,Microsoft (United States),Harvard University,QUT,Novartis Pharma AG,Institute of Statistical Mathematics,Tencent,Centrica (United Kingdom),Bill & Melinda Gates Foundation,Qualcomm Incorporated,JP Morgan Chase,B P International Ltd,Swiss Federal Inst of Technology (EPFL),University of Washington,University of Washington,University of California, Berkeley,Columbia University,Dunnhumby,DeepMind Technologies Limited,LANL,OFFICE FOR NATIONAL STATISTICS,Paris Dauphine University,EURATOM/CCFE,Los Alamos National Laboratory,Office for National Statistics,Amazon Development Center Germany,BP Exploration Operating Company Ltd,Babylon Health,Leiden University,Vector Institute,Columbia University,Institute of Statistical Mathematics,ASOS Plc,Mercedes-Benz Grand prix Ltd,ONS,The Francis Crick Institute,United Kingdom Atomic Energy Authority,Prowler.io,Centres for Diseases Control (CDC),UNAIDS,Cogent Labs,Harvard University,MTC,Vector Institute,SCR,Columbia University,DeepMind,The Alan Turing Institute,QuantumBlack,BASF,BASF AG (International),The Rosalind Franklin Institute,Element AI,African Inst for Mathematical Sciences,Cortexica Vision Systems Ltd,AIMS Rwanda,JP Morgan Chase,Dunnhumby,The Rosalind Franklin Institute,DeepMind,BASF,Heidelberg Inst. for Theoretical Studies,ACEMS,Università Luigi Bocconi,Winnow Solutions Limited,Centres for Diseases Control (CDC),ASOS Plc,Carnegie Mellon University,UNAIDS,African Institute for Mathematical Scien,NOVARTIS,University of Paris,Bill & Melinda Gates Foundation,Microsoft Corporation (USA),The Francis Crick Institute,Amazon Development Center Germany,Prowler.io,RIKEN,Harvard Medical School,MRC National Inst for Medical Research,CENTRICA PLC,The Manufacturing Technology Centre Ltd,University of Paris 9 Dauphine,UKAEA,ACEMS,Schlumberger Cambridge Research Limited,RIKEN,RIKEN,Qualcomm Technologies, Inc.,Novartis (Switzerland),LMU,UBC,Filtered Technologies,UCL,Centrica Plc,Albora Technologies,Samsung R&D Institute UK,Cortexica Vision Systems Ltd,QuantumBlack,Select Statistical Services,Filtered Technologies,Imperial College London,Queensland University of Technology,Facebook UK,Babylon Health,Cervest LimitedFunder: UK Research and Innovation Project Code: EP/S023151/1Funder Contribution: 6,463,860 GBPThe CDT will train the next generation of leaders in statistics and statistical machine learning, who will be able to develop widely-applicable novel methodology and theory, as well as create application-specific methods, leading to breakthroughs in real-world problems in government, medicine, industry and science. The research will focus on the development of applicable modern statistical theory and methods as well as on the underpinnings of statistical machine learning. The research will be strongly linked to applications. There is an urgent national need for graduates from this CDT. Large volumes of complicated data are now routinely collected in all sectors of society, encompassing electronic health records, massive scientific datasets, governmental data, and data collected through the advent of the digital economy. The underpinning techniques for exploiting these data come from statistics and machine learning. Exploiting such data is crucial for future UK prosperity. However, several reports from government and learned societies have identified a lack of individuals able to exploit this data. In many situations, existing methodology is insufficient. Off-the-shelf approaches may be misleading due to a lack of reproducibility or sampling biases which they do not correct. Furthermore, understanding the underlying mechanisms is often desired: scientifically valid, interpretable and reproducible results are needed to understand scientific phenomena and to justify decisions, particularly those affecting individuals. Bespoke, model-based statistical methods are needed, that may need to be blended with statistical machine learning approaches to deal with large data. Individuals that can fulfill these more sophisticated demands are doctoral level graduates in statistics who are well versed in the foundations of machine learning. Yet the UK only graduates a small number of statistics PhDs per year, and many of these graduates will not have been exposed to machine learning. The Centre will bring together Imperial and Oxford, two top statistics groups, as equal partners, offering an exceptional training environment and the direct involvement of absolute research leaders in their fields. The supervisor pool will include outstanding researchers in statistical methodology and theory as well as in statistical machine learning. We will use innovative and student-led teaching, focussing on PhD-level training. Teaching cuts across years and thus creates strong cohort cohesion not just within a year group but also between year groups. We will link theoretical advances to application areas through partner interactions as well as through a placement of students with users of statistics. The CDT has a large number of high profile partners that helped shape our application priority areas (digital economy, medicine, engineering, public health, science) and that will co-fund and co-supervise PhD students, as well as co-deliver teaching elements.
more_vert