
Rosenstiel School of Marine & Atmospheri
Rosenstiel School of Marine & Atmospheri
2 Projects, page 1 of 1
assignment_turned_in Project2017 - 2021Partners:Academia Sinica, University of Leeds, Academia Sinica, KIT, Nat Oceanic and Atmos Admin NOAA +10 partnersAcademia Sinica,University of Leeds,Academia Sinica,KIT,Nat Oceanic and Atmos Admin NOAA,University of Leeds,Rosenstiel School of Marine & Atmospheri,University of Miami,IGSD (Inst for Govern & Sustainable Dev),Karlsruhe Institute of Technology / KIT,National Institute for Env Studies NIES,University of Malaya,Institute for Governance & Sustainable Development,UM,Nat Inst for Environmental Studies JapanFunder: UK Research and Innovation Project Code: NE/R001782/1Funder Contribution: 586,957 GBPDepletion of stratospheric ozone allows larger doses of harmful solar UV radiation to reach the surface leading to increases in skin cancer and cataracts in humans and other impacts, such as crop damage. Ozone also affects the Earth's radiation balance and, in particular, ozone depletion in the lower stratosphere (LS) exerts an important climate forcing. While most long-lived ozone-depleting substances (e.g. CFCs) are now controlled by the United Nations Montreal Protocol and their abundances are slowly declining, there remains significant uncertainty surrounding the rate of ozone layer recovery. Changes in the LS may cause delayed ozone recovery or even additional depletion, and can also have important effects on climate. One key uncertainty, highlighted in the WMO/UNEP 2014 Assessment of Stratospheric Ozone Depletion, is the increasing importance of uncontrolled chlorine-containing very short-lived substances (VSLS) which can reach the LS and cause ozone depletion. While significant amounts of brominated VSLS are known to be emitted naturally from the oceans, recent publications also show a rapid, unexpected and unexplained increase in anthropogenic chlorinated VSLS (Cl-VSLS), especially in E and SE Asia. Some of these Cl-VSLS will reach the stratosphere via deep convection in the tropics (through the tropical tropopause layer) or via the Asian Summer Monsoon (ASM) or the E Asian Winter Monsoon. The Montreal Protocol is arguably the world's most successful environmental agreement. By controlling the production and emission of long-lived ODSs, it has set the ozone layer on the road to recovery. However, short-lived halogenated compounds (lifetimes <6 months) have so far not been included, based on the belief that they would not be abundant or persistent enough to have an impact. Recent observations suggest otherwise; calculations in this proposal suggest that Cl-VSLS may delay the recovery of the Antarctic Ozone Hole (to 1980 levels) by up to 30 years. Fortunately, the Montreal Protocol has a regular review process which allows amendments to deal with new threats to the ozone layer and climate, e.g. the recent 2016 success of including limits to the production of hydrofluorocarbons (HFCs). This proposal takes advantage of UEA's heritage in atmospheric halocarbon measurements to obtain novel observations of chlorine compounds in the key E/SE Asia region and in the global mid-upper troposphere. Surface observations will be targeted in the key winter periods when we know that we will be able to detect polluted emissions from China, a likely major emitter of Cl-VSLS globally. We will extend the suite of gases currently measured by the CARIBIC in-service global passenger aircraft to include several newly-identified VSLS. This will allow us to investigate the distribution of these VSLS over a much wider geographical area, to identify source regions and to assess longer term changes in their atmospheric abundance. Our observations will be combined with detailed 3-D modelling at Leeds and Lancaster, who have world-leading expertise and tools for the study of atmospheric chlorine. One model will be used in an 'inverse' mode to trace back the observations of anthropogenic VSLS to their source regions. Overall, the models will be used to quantify the flux of halogenated ozone-depleting gases to the stratosphere and to determine their ozone and climate impact. We will calculate metrics for ozone depletion and climate change and feed these through to the policy-making process (Montreal Protocol) with the collaboration of expert partners. The results of SISLAC will provide important information for future international assessments e.g. WMO/UNEP and IPCC reports.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4a2548486dc64187b1d796ec86d103e4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4a2548486dc64187b1d796ec86d103e4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2012 - 2017Partners:University of York, AWI, UCAR, The University of Manchester, University of Salford +31 partnersUniversity of York,AWI,UCAR,The University of Manchester,University of Salford,University of Cambridge,Droplet Measurement Technologies (United States),University of Heidelberg,National Centre for Atmospheric Research,WINMEC Laboratory,University of Manchester,University of York,DMT,University of Bremen,Universities Space Research Association,UNIVERSITY OF CAMBRIDGE,Ames Research Center,NCAR,National Center for Atmospheric Research,Kiel University,Alfred Wegener Institute (Helmholtz),Heidelberg University,Helmholtz Association of German Research Centres,Rosenstiel School of Marine & Atmospheri,University of Miami,NASA Jet Propulsion Laboratory,WINMEC Laboratory,Jet Propulsion Lab,University of Cambridge,Stratton Park Engineering Company SPEC,Alfred Wegener Inst for Polar & Marine R,USRA,Stratton Park Engineering Company (United States),Rosenstiel School of Marine & Atmospheri,CAU,NASAFunder: UK Research and Innovation Project Code: NE/J006246/1Funder Contribution: 685,315 GBPThe unique research capability of the Global Hawk, with ultra-long flights possible in the upper troposphere and lower stratosphere, provides a major new opportunity to advance atmospheric science. In response to the NERC/STFC/NASA collaborative initiative, we have assembled an experienced UK team that proposes to execute a research programme covering fundamental science and technology development, which, by working with the Global Hawk, will radically enhance our future research capabilities. The Tropical Tropopause Layer (TTL) is a crucial region for chemistry/climate interactions. Building on work we have already done in this area , we will collaborate with NASA's ATTREX programme to study the TTL over the Pacific Ocean and South East Asia, with new measurements and analysis. We will address fundamental questions related to atmospheric composition, radiation and transport. The TTL controls the transport of water vapour, the crucial radiative gas, into the stratosphere; we will advance understanding of the role of sub-visible cirrus in water vapour processes. The TTL is also the main route by which very short-lived halogen species, which represent a large uncertainty in future stratospheric ozone evolution, enter the stratosphere. We will improve knowledge of the budgets of these gases and of their chemical transformation and transport through the TTL, including the role of convective transport into the TTL and the subsequent routes for transport from the TTL to the lower stratosphere. Improving representation of these processes in global chemistry/climate models is a key aim. In order to study these processes, The FAAM BAe-146 will be deployed in Guam in Jan/Feb 2014. It will fly coordinated flights with the Global Hawk which will make measurements in the same period in the TTL over the West Pacific. Detailed involvement in all phases of the collaborative missions with ATTREX will enhance the UK potential for future research using the Global Hawk, including advanced capability in mission planning and methodologies for complex, real-time data analysis. The aircraft measurements will be interpreted in conjunction with ground-based and balloon-based measurements of very short-lived halogen species and ozone, using a complementary group of regional high resolution models, global composition models and a global cirrus model. We will develop and test two new instruments and new software for the payload/mission-scientist interface, which are ideally suited for the capabilities of the Global Hawk. One new instrument will allow quantification in the TTL of the important physical properties of sub- and super-micron sized particles, allowing new information about clouds and radiation. We will develop a new short-wave IR spectrometer to measure greenhouse (CO2, CH4, and H2O) and other (CO) gases in the lower atmosphere by remote sensing, taking advantage of the very long flights in the upper troposphere and lower stratosphere. Both instruments will be flight-tested in CAST. As well as addressing the specifics of this call, CAST addresses the central vision of the Technology theme: "to engage scientists, technologists, computer specialists and engineers working both within the NERC community and outside it, identifying that in many cases it will only be through developing new partnerships that the most challenging innovations in technology can be enabled" (http://www.nerc.ac.uk/research/themes/tap/documents/tap-technologies-2009.pdf). CAST brings new technology expertise in machine learning into the NERC community and strengthens the links between NERC scientists and the technology groups at Hertfordshire and the Astronomy Technology Centre.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::15cd70ab5424b2f6cc3a0ff868bd1e04&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::15cd70ab5424b2f6cc3a0ff868bd1e04&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu