Powered by OpenAIRE graph
Found an issue? Give us feedback

VAISALA OYJ

Country: Finland
6 Projects, page 1 of 2
  • Funder: European Commission Project Code: 644192
    Overall Budget: 3,588,260 EURFunder Contribution: 3,588,260 EUR

    Cost effective multi-wavelength light sources are key enablers for wide-scale penetration of gas sensors at Mid-IR wavelength range. Utilizing a novel Mid-IR Si-based photonic integrated circuit filter and wide-band Mid-IR SLEDs, we aim at demonstrating an innovative light source that covers 2.7…3.5 µm wavelength range with a resolution < 1nm. The spectral bands are switchable and tuneable and they can be modulated. The source allows for the fabrication of an affordable multi-band gas sensor with good selectivity and sensitivity. The unit price can be lowered in high-volumes by utilizing tailored molded IR lens technology and automated packaging and assembling technologies. In safety and security applications, the Mid-IR wavelength range covered by the source allows for the detection of several harmful gas components with a single sensor. The project is filling a gap: affordable sources are not available. The market impact is expected to be disruptive, since the devices currently in the market are either complicated, expensive and heavy instruments, or the applied measurement principles are inadequate in terms of stability and selectivity. At the foreseen price level, the proposed approach is extremely competitive against conventional gas sensors. The source will be validated in several key applications including building ventilation, high voltage asset monitoring, emission monitoring, gas leakage monitoring as well as process control and safety. The consortium is composed of one large European company, three SMEs, and three world-class research organisations from three European countries representing the complete value chain from devices and components to gas sensor manufacturers. The position of these organizations in their respective markets guarantees that the project results will be widely exploited providing the companies with a technological advantage over their worldwide competitors thus creating new high-tech jobs and technology leadership in Europe.

    more_vert
  • Funder: European Commission Project Code: 314506
    more_vert
  • Funder: European Commission Project Code: 101017689
    Overall Budget: 5,461,180 EURFunder Contribution: 3,911,770 EUR

    The GOF2.0 Integrated Urban Airspace VLD (GOF2.0) very large demonstration project will safely, securely, and sustainably demonstrate operational validity of serving combined UAS, eVTOL and manned operations in a unified, dense urban airspace using current ATM and U-space services and systems. Both ATM and U-space communities depend extensively on the provision of timely, relevant, accurate and quality-assured digital information to collaborate and make informed decisions. The demonstrations focus on validation of the GOF 2.0 architecture for highly automated real-time separation assurance in dense air space including precision weather and telecom networks for air-ground communication and will significantly contribute to understanding how the safe integration of UAM and other commercial drone operations into ATM Airspace without degrading safety, security or disrupting current airspace operations can be implemented.

    more_vert
  • Funder: European Commission Project Code: 692449
    Overall Budget: 14,312,300 EURFunder Contribution: 4,221,230 EUR

    Current driver assistance systems are not all-weather capable. They offer comfort and safety in sound environmental conditions. However, in adverse weather conditions where the accident risks are highest they malfunction or even fail. Now that we are progressing towards automated cars and work machines, the requirements of fully reliable environment perception are only accentuated. The project is focusing on automated driving and its key enabling technology, environment perception. Consequently, project’s main objective is to develop and validate an all-weather sensor suit for traffic services, driver assistance and automated driving. Extended driving environment perception capability with smart, reliable and cost-efficient sensing system is necessary to meet the targets of all future driver assistance system applications. These targets need to be met regardless of location, weather or time of the day. Only by means of reliable and robust sensing system upcoming automated driving will be possible. The new sensor suit is based on a smart integration of three different technologies: (i) Radio radar, 77 GHz-81 GHz, (MIMO Radar); (ii) Gated short wave infrared camera with pulsed laser illumination (SWIR camera)and (iii) Short-wave infrared LIDAR (SWIR Lidar). Such a full fusion approach has never been investigated before, so that the outcome will advance the state-of-the-art significantly and demonstrate the potential of all-weather environment perception. DENSE innovation lies in the provision of a brilliant restored enriched colour image from a degraded infrared image and consequently, this is followed by a variety of application fields for low cost solutions. An important aim is also to close the gap to US developments in the field and avoid their restrictions for selling components overseas for strategic reasons and strengthen the position of European industry in worldwide competition.

    more_vert
  • Funder: European Commission Project Code: 324284
    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.