Powered by OpenAIRE graph
Found an issue? Give us feedback

NOC (Up to 31.10.2019)

NOC (Up to 31.10.2019)

258 Projects, page 1 of 52
  • Funder: UK Research and Innovation Project Code: NE/I019956/1
    Funder Contribution: 122,571 GBP

    This project will aid the commercialisation of recent inventions of oceanographic / environmental sensor technology developed in collaboration by the National Oceanography Centre Southampton and the University of Southampton. They have developed novel miniaturised high performance sensors that measure the conductivity, temperature and oxygen content of water. The measurement of these parameters is essential in a wide range of environmental studies in both fresh and salt (sea) water. The small size and high performance of these new sensors suggests that they could be developed into a product with potential benefits to both science and industry. Prior to this project the inventors have commissioned a market survey and this has highlighted sizeable markets in a number of sectors. Crucially the potential customers include non scientists in sectors where potential sales volumes are large. This project seeks to investigate these commercial opportunities further and complete adaptation and testing of the technology to allow it to be demonstrated to key user groups and companies. The project will also explore business models, partnerships, patenting, and routes to manufacture.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/C001869/1
    Funder Contribution: 236,798 GBP

    It is widely accepted that the activities of mankind are leading to changes in global climate; however, the extent of those changes is far from certain due to the complexity of the climate system and the number of interacting processes involved. A central process in all climate studies is the interaction of radiation / incoming solar (shortwave) radiation, and outgoing infra-red (longwave) radiation / with the atmosphere and in particular with clouds. Clouds present a large source of variability, and uncertainty, in the radiative balance due both to the variation in extent, location, and type of cloud, and to the strong variation in properties such as reflectivity with changes in the concentration and size distribution of cloud droplets or ice crystals. Marine stratocumulus clouds / extensive sheets of low level clouds / play a major role in the global radiation balance. The size and number of their cloud droplets depends strongly on the number of aerosol particles available for droplets to form on. Sea-salt aerosol are a major source of such condensation nuclei. The generation of sea salt aerosol occurs through evaporation of water droplets generated by bubble bursting and spray torn from wave tops by the wind. The size and number of droplets produced, and hence of the aerosol produced, varies greatly with conditions: wind speed, wave state, the presence of surface films produced by plankton, etc. In order to accurately represent marine clouds, and so get the radiation balance correct in climate models, we must first determine how much aerosol and of what size, is generated under any given conditions. There is considerable uncertainty in this, particularly for the smallest aerosol, which are most relevant to climate processes. This project will measure the amount of aerosol at different sizes generated near the surface and transported upwards into the atmosphere, along with the wind speed, wave size, white-capping, and heat and moisture transfers under a wide range of different conditions. Measurements of aerosol very close to the sea surface will enable aerosol generation events to be related directly to individual breaking waves. The results will be used to improve our understanding of aerosol generation, and ultimately the fidelity of cloud representation within climate models. Another major uncertainty in modelling the future climate is the rate at which CO2 is transferred between the atmosphere and the oceans. CO2 absorbs infra-red radiation; an increase in CO2 in the atmosphere due to the burning of fossil fuels means more infra-red radiation is absorbed, causing a warming of the atmosphere. The observed increase in CO2 in the atmosphere is less than might be expected given the amount of fuel burnt. This is due in large part to the absorption of CO2 by the oceans. Although CO2 is absorbed by the oceans as a whole, on regional scales the transfer of CO2 between the atmosphere and ocean can occur in either direction, depending upon the local concentrations of the gas in the air and water. The rate of the transfer depends also on the wind speed, bubble formation, sea-state, and surface films. As with aerosol production, there are large uncertainties in how the rate of transfer varies with conditions / by a factor of two or more under some conditions. Direct measurements of the transfer of CO2 between the atmosphere and ocean, along with those of the meteorological and ocean conditions, will be used to reduce the uncertainty in the parameterization of CO2 transfer. This will in turn allow improvements to long term climate models.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/D000815/1
    Funder Contribution: 250,453 GBP

    This proposal is aimed at enhancing the international reputation of the NERC Autosub autonomous underwater vehicle programme and building on its science achievements. It will sustain an international presence, and provide a bridge between the Autosub Under Ice directed programme and future opportunities such as International Polar Year. There are four deliverables within this proposal: 1) A Masterclass and a separate Science Workshop that will reinforce the UK position as a world leader in environmental science and technology using autonomous underwater vehicles. 2) Twelve competitive placements, arranged in conjunction with the British Council, to enable young UK and overseas scientists and engineers to develop lasting collaborative links. 3) Sponsorship of sessions and poster receptions at major international conferences (American Geophysical Union, European Geophysical Union) and at workshops co-organised with the Scientific Committee on Antarctic Research and International Polar Year. 4) Outreach to young people and their educators worldwide through a web-conference arranged through the College for Exploration.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/H022260/1
    Funder Contribution: 217,452 GBP

    Along the western margin of Spitsbergen, where the northern extension of Gulf Stream system conveys warm Atlantic water into the Arctic Ocean, hundreds of plumes of bubbles of methane gas were discovered in 2008, rising from the seabed at a depth close to that of the landward limit of the methane hydrate stability zone. Methane hydrate is a solid with the appearance of ice, in which water forms a cage-like structure enclosing molecules of methane. Methane hydrate is stable under conditions of low temperature and high pressure such as those found in regions of permafrost or under the ocean in water deeper than 300-600 metres, depending on the water temperature. Over the past thirty years, the ocean's temperature at the seabed has increased by 1 degree C, causing the zone in which hydrate is stable to contract down the continental slope, with the apparent consequence that hydrate has broken down and released methane, which has migrated to the seabed and into the ocean. At present, the rate of release of methane is generally too slow to overcome dissolution and oxidation in the ocean to reach the atmosphere, except in very small quantities. However, catastrophic gas venting, which is known to occur elsewhere, could release large amounts of methane over a short period of time. The strength of such venting depends upon the how much gas is stored locally beneath the seabed and the kinds of pathways that bring gas to the seabed. The proposed research seeks to define these pathways and to quantify the amount of gas. A marine research expedition will use a deep-towed, very high-resolution seismic system to image the small-scale structures that convey gas to the seabed and to detect the presence of gas in the sediments beneath the seabed. This will be done in conjunction with an electromagnetic exploration system that uses a deep-towed transmitter and receivers on the seabed to derive the variations in electrical resistivity in the sediments beneath the seabed. Higher-than-normal resistivity is caused by both gas and hydrate, whereas the presence of gas reduces seismic velocity and hydrate increases it. In combination, the two techniques can distinguish the separate amounts of hydrate and gas. The deep-towed seismic system, SYSIF, which uses a piezo-electric chirp source that gives very-high-resolution images and deeper sub-seabed penetration than similar systems mounted on a ship's hull, will be supplemented by the use of ocean-bottom seismometers to provide precise measurements of the variation of seismic velocity with depth, and seismic profiles with small airgun (mini-GI gun) to provide deeper high-resolution seismic imaging. Multibeam sonar will be used to improve definition of the shape of the seabed and high-frequency, fish-finding sonar will image plumes of gas bubbles and define their positions, providing, in many cases, comparisons with the images obtained in 2008 when they were first discovered. Two areas will be investigated, the region of the landward limit of the methane hydrate stability zone, where many bubble plumes occur in water shallower than 400 metres, and, for comparison, a pockmark in the Vestnesa Ridge, at a depth 1200 metres, from which gas is escaping and is underlain by 'chimneys' that convey gas to the seabed through the hydrate stability zone, where the gas would normally form hydrate. Geological and geophysical data, including 96-channel seismic reflection profiles, acquired in both areas during a research cruise in 2008, will complement the new data. The project will provide the sub-seabed context for a seabed observatory (MASOX Monitoring Arctic Seafloor - Ocean Exchange), which will be established in the shallow plume area in summer 2010 by a European scientific consortium to monitor the activity of the plumes and the physical and chemical fluxes through the seabed.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R024537/1
    Funder Contribution: 211,108 GBP

    Project Summary: Nature-based coastal defence solutions have increasingly been recognized as more sustainable alternatives to conventional hard engineering approaches against climate change. These include using wetlands, mangroves, coral and oyster reefs as a buffer zone, which can attenuate waves and, in a regime of moderate sea level rise, the sediment trapping in such zones can keep pace with sea level. Wetlands and mangroves are regions in which more salt-tolerant species exist, which can protect freshwater species behind them. Nature-based defences have been deployed in the USA, Netherlands and UK and also in some parts of China, with varying degrees of success. In deltas undergoing fast urbanisation, applying nature-based solutions can lead to competition for space with other land uses, e.g. land-reclamation. For optimised management, the question of how much space is required by nature-based solutions must be addressed. However, our current knowledge of the size-dependent defence-value and resilience of different ecosystems is insufficient. Additionally, we lack full understanding of the methods needed for ecosystem creation for coastal defence, as previous restoration efforts have suffered low success rates. The current proposal aims to develop process-based understanding and predictive models of ecosystem size requirements and how to create ecosystems for coastal defence, using the world's largest urban area, the Pearl River Delta (PRD) in China, as a model system. Delta-scale mangrove area monitoring and hydrodynamic modelling will be conducted to study recent wetland area changes and estimate the optimisation of ecosystem spaces for defence, under contrasting scenarios of climate change and land-reclamation. This large-scaled study will also provide underpinning boundary conditions for local-scale experiments and modelling. A set of experiments using novel instruments will be conducted to improve our insights into the processes influencing mangrove resilience and propagation. Innovative measures of using dredged materials and oyster reefs to facilitate mangrove establishment will also be tested experimentally. Local-scale models will incorporate the new experimental knowledge to predict mangrove bio-geomorphic dynamics and provide guidelines for management. The developed models and knowledge will be directly applied in the design of a pilot eco-dike project due to be constructed, in collaboration with our project partners. We will consider how to address resilient urban planning and management, in terms of combining spatial planning and disaster management by optimising land use, institutions and mechanisms for more sustainable urbanisation, exploring eco-dynamic design options to provide opportunities for nature as part of the urban development processes. Summary of the UK applicants' contribution to the project: The UK applicants will lead Work Task 1: Wetland area monitoring/hydrodynamic modelling. This work task will provide an over-view of the bio-physical conditions, including the morphological and land-use aspects of the PRD and its regional setting, for the present day, and under future climate projections of sea level and storms. The UK team will implement a high resolution unstructured-grid model (FVCOM) for the Pearl River Delta (PRD) for hydrodynamics, waves and sediment transport which will provide the interface between the larger scale atmospheric and oceanic boundary conditions and the smaller-scale process studies and ecosystem modelling to be carried out by our Dutch and Chinese partners. This model, together with regional sea level projections, will be used to provide quantitative scenarios for the local area ecological modelling.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.