
Hoxton Farms
Hoxton Farms
2 Projects, page 1 of 1
assignment_turned_in Project2022 - 2025Partners:The Alan Turing Institute, The Alan Turing Institute, Newcastle University, BC, Massachusetts Institute of Technology +20 partnersThe Alan Turing Institute,The Alan Turing Institute,Newcastle University,BC,Massachusetts Institute of Technology,Hoxton Farms,Syngulon,Syngulon,Hoxton Farms,Raytheon BBN Technologies,LabGenius Ltd,University of Paris-Saclay,SynbiCITE,Massachusetts Institute of Technology,DeepMind,University Paris Saclay,Raytheon (United States),SynbiCITE,Raytheon,Imperial College London,Newcastle University,Google Deep Mind UK,Massachusetts Institute of Technology,LabGenius (United Kingdom),LabGenius LtdFunder: UK Research and Innovation Project Code: BB/W013770/1Funder Contribution: 1,259,580 GBPOur vision for this Transition Award is to leverage and combine key emerging technologies in Artificial Intelligence (AI) and Engineering Biology (EB) to enable and pioneer a new era of world-leading advances that will directly contribute to the objectives of the National Engineering Biology Programme. Realisation of the benefits of Engineering Biology technologies is predicated on our ability to increase our capability for predictive design and optimisation of engineered biosystems across different biological scales. Such a scaled approach to Engineering Biology would serve to significantly accelerate translation of scientific research and innovation into applications of wide commercial and societal impact. Synthetic Biology has developed rapidly over the past decade. We now have the core tools and capabilities required to modify and engineer living systems. However, our ability to predictably design new biological systems is still limited, due to the complexity, noise, and context dependence inherent to biology. To achieve the full capability of Engineering Biology, we require a change in capacity and scope. This requires lab automation to deliver high-throughput workflows. With this comes the challenge of managing and utilising the data-rich environment of biology that has emerged from recent advances in data collection capabilities, which include high-throughput genomics, transcriptomics, and metabolomics. However, such approaches produce datasets that are too large for direct human interpretation. There is thus a need to develop deep statistical learning and inference methods to uncover patterns and correlations within these data. On the other hand, steady improvements in computing power, combined with recent advances in data and computer sciences have fuelled a new era of Artificial Intelligence (AI)-driven methods and discoveries that are progressively permeating almost all sectors and industries. However, the type of data we can gather from biological systems does not match the requirements for off-the-shelf ML/AI methods and tools that are currently available. This calls for the development of new bespoke AI/ML methods adapted to the specific features of biological measurement data. AI approaches have the potential to both learn from complex data and, when coupled to appropriate systems design and engineering methods, to provide the predictive power required for reliable engineering of biological systems with desired functions. As the field develops, there is thus an opportunity to strategically focus on data-centric approaches and AI-enabled methods that are appropriate to the challenges and themes of the National Engineering Biology Programme. Closing the Design-Build-Test-Learn loop using AI to direct the "learn" and "design" phases will provide a radical intervention that fundamentally changes the way that we design, optimise and build biological systems. Through this AI-4-EB Transition Award we will build a network of inter-connected and inter-disciplinary researchers to both develop and apply next-generation AI technologies to biological problems. This will be achieved through a combination of leading-light inter-disciplinary pilot projects for application-driven research, meetings to build the scientific community, and sandpits supported by seed funding to generate novel ideas and new collaborations around AI approaches for real-world use. We will also develop an RRI strategy to address the complex issues arising at the confluence of these two critical and transformative technologies. Overall, AI-4-EB will provide the necessary step-change for the analysis of large and heterogeneous biological data sets, and for AI-based design and optimisation of biological systems with sufficient predictive power to accelerate Engineering Biology.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::55b3d6cb86b0e92504087613ba0467e5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::55b3d6cb86b0e92504087613ba0467e5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2023 - 2030Partners:Ivy Farm Technologies, Qkine Ltd, Cellular Agriculture Ltd, MilliporeSigma, Naturbeads Ltd +22 partnersIvy Farm Technologies,Qkine Ltd,Cellular Agriculture Ltd,MilliporeSigma,Naturbeads Ltd,Quest Meat,Multus Biotechnology Limited,Cellular Agriculture Ltd,Qkine Ltd,Multus Biotechnology Limited,Roslin Technologies Limited,Naturbeads Ltd,Ivy Farm Technologies,Veolia Water Technologies,Veolia Water Technologies,3D Bio-Tissues Ltd,Hoxton Farms,Hoxton Farms,Campden BRI (United Kingdom),Clean Food Group,Quest Meat,Clean Food Group,CAMPDEN BRI,University of Bath,MilliporeSigma,University of Bath,Roslin Technologies LimitedFunder: UK Research and Innovation Project Code: EP/X038114/1Funder Contribution: 12,302,100 GBPImagine being able to manufacture food anywhere in the world, or even in space, so everyone, everywhere, has enough nutritious food to eat! This dream can be achieved through Cellular Agriculture (Cell Ag). Cell Ag enables the production of food products that would normally come from an animal, such as meat and milk from cows, or from monocultures of crops such as oil palm trees, without having to keep increasing animal or plant numbers to feed our growing global population. Cell Ag, uses biological cell-level processes to create food via the 'building blocks of life' - the proteins, fats and carbohydrates. By delivering these building blocks, Cell Ag will transform food production by complementing traditional food production, so not only can we feed the world, but we can manufacture the food so that sustainability and social responsibility is embedded from the outset. Why would we wish to use Cell Ag rather than animals? Let's take the example of the building block, protein, from traditional meat. Life Cycle Assessments have shown that when comparing traditional meat manufacturing against the expected benefits of using Cell Ag, there is a predicted reduction in greenhouse gas emissions, and land use, of up to 95%. The analysis also estimates that we could achieve up to 50% reduction in the use of water, compared to cattle farming. And we could reduce need for intensive farming so improving animal welfare too. So, with these benefits and the urgent need to achieve Net Zero Manufacturing and protect the planets resources. Why do we not have Cell Ag manufacturing in our homes or across all our food manufacturing sectors? There are several reasons - and our research will remove these blockers to Cell Ag manufacturing. Current status of Cell Ag Manufacturing research and outputs in the UK: In the UK (and across the World), there are pockets of excellent research being done, but little that focuses on delivering useable and scalable manufacturing machinery, processes, and systems in a coherent manner. The research tends to be in silos and focussed on aspects of the Manufacturing Value Chain. There are fundamental areas of research that need to be delivered to enable us to realise the Cell Ag potential, as well as transforming current research outputs to be useable. Through this Hub we will bring together the pockets of excellence in the UK, and deliver a coherent and targeted research programme that will ensure the UK Cell Ag research ecosystem is world-leading and has manufacturing impact. Rather than target a particular sector/type of food/product - the Hub will deliver manufacturing research which will enable production of food building blocks at local, regional and international levels. Our vision is to be the world leader in delivering materials, manufacturing processes and skills to escalate the world's adoption of sustainable Cell Ag food production. We will achieve this through becoming the net exporter of the building blocks of life.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1aefd958b9481eac652c93fab4fd294c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1aefd958b9481eac652c93fab4fd294c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu