Powered by OpenAIRE graph
Found an issue? Give us feedback

Sustainable Marine Energy

Sustainable Marine Energy

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/S023933/1
    Funder Contribution: 6,150,400 GBP

    The need for a network of doctoral engineers with interdisciplinary skills: The UK leads the world in research, innovation, development, demonstration & deployment in wave and tidal technologies. It has 35% & 50% of European wave and tidal current energy potential respectively, and 13% of the shallow-water offshore wind potential. Existing offshore wind technologies could be used to meet 15% of UK electricity demand, with significantly greater potential available in deeper waters for new innovative technologies. The 2017 Digest of UK Energy Statistics shows that wind energy capacity is 16GW (with 5.3GW offshore). The UK has a greater installed capacity of tidal current technologies and has demonstrated a greater number of wave technologies than the rest of the world put together. UK and European offshore wind capacity is expected to increase, respectively by 1 and 2.5 GW/year until 2030. Bloomberg New Energy Finance have projected 115GW of global installed offshore energy capacity by 2030. Cambridge Econometrics have identified that to drive even just this UK development, by 2032, offshore wind would alone need to grow human capacity in the sector to around 60,000 FTE jobs in the UK, with 14,000 directly employed in managerial and professional engineering and scientific roles. The challenges to define and develop the necessary technologies and know-how for the ORE sector are defined by the interaction and inter-dependence of: impact on the natural environment; its energy resources; the emergence of new innovative technologies; manufacture, deployment, operation and maintenance at scale; micro- and macro-economic appraisal; regulation & policy; social & environmental acceptance. Prior experience in IDCORE and Supergen UKCMER, recent roadmaps, and advice from industrial partners show that we must train a connected network of scientists and engineers with deep use-inspired research & innovation skills in their individual domains, and an appreciation of the challenges and state of the art solutions across the breadth of the sector. The approach that will be taken: We propose to establish a new centre, building on the strengths of the successful Industrial Doctoral Centre for Offshore Renewable Energy and Supergen UKCMER. To exploit synergy, opportunities for scale & additional impact, this proposal is made in partnership by the Universities of Edinburgh, Exeter and Strathclyde and the Scottish Association for Marine Sceince. Together we will deliver and operate a fully integrated CDT forming a best-with-best partnership to create future leaders for the British energy systems and to train them to fully integrate offshore renewables into the decarbonised energy systems of the future. Specifically, the new IDCORE CDT will * Graduate 50 new postgraduate students, supervised by a cohort of over 80 academic staff in the UK. * Use world-class UKRI funded facilities to provide cutting-edge training in engineering, science & inter-disciplinary areas; * Deliver impact from excellent research in integrated cross-disciplinary themes from the ocean to the end user; * Train research students throughout the full life cycle of research, spanning theory to practice, including engineering, physical, data & natural science, economics, management, leadership & social-science skills. Overview of the research areas of the centre: Experience, assisted by our industrial partners, has defined the need for research, training and innovation in the following areas: natural resource; environmental impact assessment (and mitigation); development of offshore energy technologies; new materials and science for components, sub-systems and devices in the offshore environment; data science; autonomous inspection and condition monitoring; remote and local operation and maintenance; energy conversion, conditioning, storage and delivery; energy economics, policy and regulation. IDCORE provides this.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N02057X/1
    Funder Contribution: 508,199 GBP

    Identifying and understanding extreme and fatigue loads on tidal energy converters (TEC), understanding environmental extremes (other than main resource), and determining accessibility, serviceability criteria, fault intervals and associated device life cycles, are all important factors that can determine CAPEX and OPEX cost of devices and array deployments. This project will provide a holistic vision for design optimisation to ensure, reliability and survivability for floating TECs (FTECs). Computational modeling and real sea deployment measurements will provide a tool to inform the optimum operational strategy and maximise survivability and reliability for FTEC devices and arrays. Swansea University will develop a versatile BEMT code to enable the study of FTECs numerically at a fundamental level and physically by working closely with project partners Oceanflow Energy, EMEC and Black and Veatch to determine the most important parameters to be measured for this type of technologies. Measurements taken at the Sanda Sound deployment site for the Oceanflow Energy 1:4 scale EVOPOD prototype, including loads on the device and sea condition datasets, will be used to validate the BEMT model for FTECs. A generic BEMT FTEC model will then be tested using environmental data, including extremes, provided by EMEC. In collaboration with Black and Veatch the resulting load predictions will be used to estimate component fatigue and failure. This will lead to the development of an operational strategy and design guidance to maximise survivability and reliability of FTECs.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.