Powered by OpenAIRE graph
Found an issue? Give us feedback

MAS S.A.

MAS AE PROIGMENES TECHNOLOGIES ENERGEIAS KAI ISCHYOS
Country: Greece
3 Projects, page 1 of 1
  • Funder: European Commission Project Code: 101022831
    Overall Budget: 18,813,900 EURFunder Contribution: 14,000,000 EUR

    CO2OLHEAT will demonstrate at TRL7 in the CEMEX cement manufacturing plant in Prachovice (CZ) the operation of a 2 MW Waste-Heat-to-power (WH2P) skid based on a 2MW-sCO2 cycle able to efficiently valorize local waste heat at a significant temperature of 400°C. Capitalizing consortium excellent knowledge coming from previous sCO2 turbomachinery design experience and EU funded projects on industrial waste heat valorisation (TASIO, i-THERM, sCO2-FLEX etc.) and stimulated by SPIRE roadmap and EU sCO2 R&D initiatives, CO2OLHEAT aims to valorize waste heat even at higher temperature if compared with the traditional steam/ORC solutions. The project will demonstrate the EU MW scale first-of-a-kind waste heat-sCO2 plant towards a cheaper/more flexible waste heat valorisation. The project will strengthen EU industrial leadership in both energy intensive industries (making them more competitive) and turbomachinery sectors, bridging the current gap on sCO2 turbomachinery that EU has with US and Japan-Korea. The project will analyse sCO2 WH2P potential from a technical, economic and environmental point of view, developing innovative models for the design of the cycle and of the turbomachinery as well as investigating CO2OLHEAT cycle benefits in the cement, glass, aluminium, power generation sectors via techno-economic and Life Cycle based replication feasibility studies, involving relevant EU industrial players (EDF, ENGIE, MYTH, CEMEX, SISECAM, CELSA). The project is coordinated by ETN and involves an industry driven consortium with key turbomachinery OEM (SIE-BH), energy intensive industries, energy utilities and R&D partners all committed to bring soon CO2OLHEAT sCO2 cycle technologies on the market. Thanks to its robust demonstration and replication campaign (also foreseeing extra-EU stakeholders collaboration), CO2OLHEAT can be considered a “demonstration to market” project, being keystone for EU sCO2 turbomachinery industry and for a more effective waste heat valorisation.

    more_vert
  • Funder: European Commission Project Code: 952953
    Overall Budget: 13,232,800 EURFunder Contribution: 10,000,000 EUR

    According to JRC CSP platform, with an increased efficiency of component and price reduction, 11 % of EU electricity could be produced by CSP by 2050. In the EC energy strategy, CSP finds mention as a potential dispatchable RES thus increasing potential market/need for CSP if coupled with flexible, high performant and low CAPEX power conversion units. In this sense sCO2 has been worldwide studied for several years as enabling technology to promote CSP widespread. SOLARSCO2OL presents sCO2 cycles as key enabling technology to facilitate a larger deployment of CSP in EU panorama which is composed (also considering available surfaces and DNI) by medium temperature application (most of them Parabolic trough – Tmax = 550°c) and small/medium size plants enhancing their performances (efficiency, flexibility, yearly production) and reducing their LCOE. Considering that compared to organic and steam based Rankine, sCO2 cycles achieve high efficiencies over a wide temperature of range of heat sources with lower CAPEX, lower OPEX, no use of water as operating fluid (a plus for arid CSP plants area), smaller system footprint, higher operational flexibility, SOLARSCO2OL would like to demonstrate in Evora Molten Salt platform facility the first MW Scale EU sCO2 power block operating coupled with a MS CSP. SOLARSCO2OL will capitalize previous EU expertise (SCARABEUS, sCO2-flex, MUSTEC), bridging the gap with extra-EU countries R&D on these topics and studying different plant layouts also to enhance CSP plants flexibility to enable them to provide soon grid flexibility services. SOLARSCO2OL is driven by an industry oriented consortium which promotes the replication of this concept towards its complete marketability in 2030: this will be properly studied via scale up feasibility studies, environmental and social analysis encouraging business cases in EU (particularly in Italy and Spain as two of the most promising EU CSP countries) and Morocco thanks to MASEN.

    more_vert
  • Funder: European Commission Project Code: 884157
    Overall Budget: 12,555,400 EURFunder Contribution: 9,887,140 EUR

    Natural gas (NG) fired Combined Cycle (CC) power plants are currently considered the most flexible power plants to operate in the EU grid to facilitate RES penetration. They changed their role in the EU electric market from the backbone of EU electrical grid to providing most of regulation services necessary to increase the share of non-programmable renewable sources into the electrical grid. In order to enhance their flexibility and also start to sell flexibility/ancillary services (also considering potential virtual aggregation), GT Original Equipment Manufacturers (OEMs) and Utilities are investigating new strategies and technologies for power flexibility, also considering that a “fuel switch” is close foreseen from coal to NG among most used fossil based dispatchable power plants and that the role of CC will be of “RES best friends” at least up to 2030. In this sense reducing their emission is also a strong need of GT R&D panorama promoting the exploitation of different fuels than Natural gas only. FLEXnCONFU aims to demonstrate at TRL7 in Ribatejo EDPP CC Power Plant a Power-to-gas-to-power (P2G2P) solution that will enhance CC flexibility (thus enabling them to provide grid flexibility services and getting higher revenues), reduce their NG consumption and therefore their related emission. The P2G2P system will be based on a Power-to-Hydrogen solution developed by HYGS+ICI, while a Power-to-ammonia-to-power solution developed by PROTON and ICI will be demonstrated in a properly modified microgas turbine operating in a UNIGE laboratory within the Savona Smart Microgrid (TRL6). The P2G2P solution will be directly controlled by a grid driven/responsive management system developed by MAS. GT combustion acceptability of different NG/H2/NH3 mixtures will be studied in CU labs. FLEXnCONFU will be a demonstration to market project and upscale and replication of the demonstrate P2H/P2A will be studied (in ENGIE and TP CC plants) and properly promoted by ETN.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.