Powered by OpenAIRE graph
Found an issue? Give us feedback

Merlin Circuit Technology (United Kingdom)

Merlin Circuit Technology (United Kingdom)

6 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/L022192/1
    Funder Contribution: 173,060 GBP

    We have invented a new patterning process, which allows the formation of metal tracks onto non-conductive, plastic, flexible substrates, coating or powder such as polyimide or PEI (polyetherimide). The process takes place in air environment at atmosphere pressure using low cost equipment. The process involves the simple dipping of a substrate into a solution of potassium hydroxide, following by another dipping into a metal ions solution. The first dipping allows the opening of the imide ring chemical structure and insertion of the potassium ions into the broken chemical ring. The second dipping allows the swapping of the potassium ions with the ions of the electrolyte solution. A laser or a flood exposure equipment using a photomask can be used to reduce the surface metal ions resulting in a gradient of metal ions, then the ions diffuse into the depleted zone and reach the surface where they reduce. A mild electron-donating agent has been used to accelerate the reduction of the ions. A thin layer of metal nanoparticles is then formed using this simple process, which can be used for subsequent electroless plating or for sensing purposes. Our preliminary feasibility studies published in IEEE transactions in Nanotechnology have demonstrated the concept using a synthetic agent at the cost of long exposure time and damage to the substrate. We started using a bio-inspired material, chlorophyll extracted from spinach leaves, to speed up the photochemical process from 3 hours to 1 minute exposure using a blue light LED. We wish demonstrate that the use of chlorophyll can enable a truly manufacturing process that can be scaled up, and fully characterised for plastic electronics, PVs, moulded interconnects in electronics, sensing applications, in conjunction with additive manufacturing for multi-material manufacturing.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K020250/1
    Funder Contribution: 725,790 GBP

    The research challenge we will tackle is to realise real-time visualisation of tissue in the brain with a needle capable of minimally-invasive, real-time, high resolution ultrasound imaging. This will, for the first time, enable the neurosurgeon to obtain immediate information about lesions and the location of critical structures in the brain intraoperatively, and thus to provide treatment with less morbidity and better patient outcomes. Our specific engineering challenge is to create a needle carrying an integrated, miniature ultrasound array for high-resolution (~100 um) neurological imaging and to demonstrate feasibility for future translation into clinical practice. Previous EPSRC-funded collaboration by the Universities of Birmingham and Dundee has shown that piezocomposite material with microscale features can be realised with net-shape micromoulding techniques. Single element transducers based on these materials have been evaluated already and exploratory studies with Heriot-Watt University have demonstrated the capability to bond dense interconnects onto the new materials at low temperature and pressure to connect kerfless imaging arrays to external imaging electronics. The research we now propose will extend and integrate this technical work with neurosurgery to determine basic capabilities using brain tissue in soft-embalmed cadavers and to explore potential surgical benefits and applications. As well as the three university partners, the work will benefit from support from four companies, covering all aspects of the technology as well as its translation into clinical practice.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N018222/1
    Funder Contribution: 351,844 GBP

    Selective formation of metallic nanoparticles in plastics has a wide range of uses for generating conductive tracks, creating antimicrobial surfaces and for the fabrication of sensors and actuators which has a broad spectrum of applications such as microsystems, printed electronics and wearable devices. Photobioform II aims to develop bio-inspired, industrially relevant manufacturing processes that can selectively pattern metals onto non-conductive substrates using light-harvesting complexes to accelerate the reduction of metal ions embedded into these substrates. The key challenges addressed in this project cover the fields of material science and manufacturing. The material science challenges include (1) the vast range of materials which can be processed using this method where each material requires different treatment techniques or operational parameters, (2) the need for a better understanding of the mechanisms responsible for the photosynthesis within the light harvesting complexes, (3) the determination of the optimal material formulation for this reduction processes and (4) the understanding of the interdependent factors (wavelength, intensity, etc) acting in this multi-dimensional design space to target the for optimum metallisation process. The manufacturing challenges cover (1) the interplay between processes and manufacturing techniques (and equipment) to deliver these processes (2) the novel spray coating process using aerosol jetting and (3) the industrial need for high speed, high resolution and low cost photo-patterning techniques. Particular high impact applications of prosthetics and encoders will be used to demonstrate the manufacturing capabilities developed during this research.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K034537/1
    Funder Contribution: 5,003,710 GBP

    Capsule endoscopy for medical diagnosis in the gastrointestinal (GI) tract has emerged only in the past 10 years. Now established in "pillcams", which have benefitted more than 1 m patients worldwide, it is a clear candidate for further innovation. Most capsule endoscopy devices record and transmit video data representing the visual appearance of the inside of the gut, but work has begun on other diagnostic techniques, such as the measurement of pH, and there has been some research into the use of capsules for treatment as well. Medical ultrasound imaging is a safe, inexpensive technique which can be applied in real-time at the point of care. Ultrasound is also capable of treatment through focused ultrasound surgery and, in research, for targeted drug delivery. The core of the Sonopill programme is the exploration of ultrasound imaging and therapeutic capabilities deployed in capsule format. This will be supported by extensive pre-clinical work to demonstrate the complementary nature of ultrasound and visual imaging, along with studies of multimodal diagnosis and therapy, and of mechanisms to control the motion of the Sonopill as it travels through the GI tract. This brings research challenges and opportunities in areas including ultrasound device and systems design, microengineering and microelectronic packaging, autonomous capsule positioning, sensor suites for diagnosis and intervention, and routes to translation into clinical practice. Our carefully structured but open-ended approach maximises the possibility to meet these research challenges while delivering for the UK a sustainable international lead in multimodality capsule endoscopy, to provide greater capabilities for the clinician, more acceptable practice for the patient population, and lower costs for economic wellbeing.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L01596X/1
    Funder Contribution: 4,493,490 GBP

    In a consortium led by Heriot-Watt with St Andrews, Glasgow, Strathclyde and Dundee, this proposal is for an EPSRC CDT in Applied Photonics and responds to the Integrative Technologies priority area, but also impacts on the Measurement and Sensing, Photonic Materials and Innovative Production Processes priorities. Technologies integrating photonics and electronics pervade products and services in any modern economy, enabling vital activities in manufacturing, security, telecommunications, healthcare, retail, entertainment and transport. The success of UK companies in this technology space is threatened by a lack of doctoral-level researchers with a grasp of photonic- / electronic-engineering design, fabrication and systems integration, coupled with high-level business, management and communication skills. By ensuring a supply of these individuals, our CDT will deliver broad-ranging impacts on the UK industrial knowledge base, driving the high-growth export-led sectors of the UK economy whose photonics-enabled products and services have far-reaching impacts on society, from consumer technology and mobile computing devices to healthcare and security. Building on the success of our current IDC in Optics and Photonics Technologies, the proposed CDT will again be configured as an IDC but will enhance our existing programme to meet industry's need for engineers able to integrate photonic and electronic devices, circuits and systems to deliver high value products and processes. Our proposal was developed in partnership with industry, whose letters of support show a commitment to sponsoring 71-74 EngD and 14-17 PhD projects -- 40% more than the minimum required -- demonstrating exceptional industrial engagement. Major stakeholders include Fraunhofer UK, NPL, Renishaw, Thales, BAE Systems, Gooch and Housego and Selex ES, who are joined by a number of SMEs. The CDT follows a model in which (annually) EPSRC funds 7 EngD students, with 3 more supported by industrial / university contributions. In a progressive strategy supported by our industrial partners, we will, where appropriate, align university-funded PhD projects to the programme to leverage greater industry engagement with PhD research in the consortium. The focus of the CDT corresponds to areas of research excellence in the consortium, which comprises 89 academic supervisors, whose papers since 2008 total 584 in all optics journals , with 111 in Science / Nature / PRL, and whose active EPSRC PI photonics funding is £40.9M. All academics are experienced supervisors, having each supervised on average >6 doctoral students, with many previously acting as IDC supervisors. The strategic commitment by the participating universities is evidenced by their recruitment since 2008 of 29 new academic staff in relevant areas (including 9 professors). An 8-month frontloaded residential phase in St Andrews and Glasgow will ensure the cohort strongly gels together, and will equip students with the technical knowledge and skills they need before they begin their industrial research project. Business modules (x3) will bring each cohort back to Heriot-Watt for 1-week periods, and weekend skills workshops will be used to regularly reunite the cohort, further consolidating it to create opportunities for peer-to-peer interactions. Taught courses will total 120 credits, and will be supplemented by new Computational Methods, Systems Integration and Research Skills workshops delivered by our industry partners, as well as public-engagement training led by Glasgow Science Centre. Another innovation is an International Advisory Board, comprising leading academics / industrialists , who will benchmark and advise on our performance. The requested EPSRC support of £4.5M is complemented by £2.8M of industrial / academic cash, covering the cost of 3 students in each cohort of 10. In-kind industrial / academic contributions are worth a further £5.4M, providing exceptional value.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.