
British Steel (United Kingdom)
British Steel (United Kingdom)
10 Projects, page 1 of 2
assignment_turned_in Project2024 - 2026Partners:University of Oxford, British Steel (United Kingdom), HyDEXUniversity of Oxford,British Steel (United Kingdom),HyDEXFunder: UK Research and Innovation Project Code: EP/Y015924/1Funder Contribution: 335,842 GBPEnergy generated from solar, and wind renewable sources are surging forward as contributors to achieving Net Zero. Hydrogen can be used as an energy carrier to store energy from renewable sources over a period (days to months) without generating any loss or pollution. It has been emerging as one of the leading options for future energy systems. However, the low volumetric density of hydrogen as well as the safety and economic issues associated with hydrogen storage inhibit its use as an economically viable energy vector. Among the existing routes, storage of hydrogen in the solid state as metal hydrides appears to be an attractive alternative both from the safety and the volumetric energy density points of view. It also offers high gravimetric capacity which potentially allows for storing enough hydrogen for distributed hydrogen demand. However, there are some issues with metal hydrides: (1) The rates of hydrogen absorption and desorption are strongly controlled by heat and mass transfer; the thermodynamics and kinetics limits of these hydrides cause slow hydrogenation and dehydrogenation rates. (2) The production cost of the solid hydrogen storage materials is still a major barrier to disabling scale-up for mobile or stationary applications. Metal alloys based on transition metals and rare earth elements are mostly studied, however, these significantly increase the material's cost. Lanthanum (La) has been widely used to alloy with other metals, but its price is approx. £300/kg. (3) The lightweight, excellent heat resistivity and good recyclability, as well as abundant availability and low price make Mg Hydride a good candidate (the price of Mg is approx. £3/kg). However, the excessively strong chemical bonds result in the difficulty of releasing hydrogen, typically requiring high temperatures of 300-350oC to overcome the thermodynamic energy and kinetics barriers. Addressing industry demand, key developments to cope with the above challenges will include improved energy efficiency and reduced production cost using low-cost and feasible chemical engineering solutions. Standard hydrogen sorbent modules will be developed using waste alloys and novel thermochemical energy storage (TES) which could suit multi-scale applications, particularly the heavy industry which has been widely recognised as a hard-to-decarbonize sector. It includes novelties in both hydrogen sorbent manufacturing using a 'template' method, emerging TES and induction heating, to synergistically improve the system efficiency and accelerate the dehydrogenation process, as well as the synergistic module. The success of this project will also contribute to the operating cost reduction of the solid hydrogen system and benefit researchers and engineers to accelerate hydrogen storage technology using abundant resources and low-cost technology.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2e1e705eadf895027b6cb88e7c925511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2e1e705eadf895027b6cb88e7c925511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2025Partners:University of Leeds, Flemish Institute for Technological Research, Hanson Heidelberg Cement Group, RWTH, British Steel (United Kingdom)University of Leeds,Flemish Institute for Technological Research,Hanson Heidelberg Cement Group,RWTH,British Steel (United Kingdom)Funder: UK Research and Innovation Project Code: EP/W018810/2Funder Contribution: 763,898 GBPThe cement and steel sectors are foundational to the UK, are the largest manufacturing industries (by mass), and are essential to construct our infrastructure. Cement manufacture is intensive in resources, carbon, and energy, and needs radical transformation to achieve sustainability. The steel industry produces up to 1M tonnes of steel making by-products annually, and into the foreseeable future. These waste materials need to be managed properly to improve resource efficiency, and to avoid landfill and subsequent ecotoxicity. Although effective utilisation of steel slags is ~80%, a large portion is unutilised. Moreover, the majority of slag utilisation is for low-value products, e.g. aggregate, but their chemistry and mineralogy are variable, making their effects on material properties unpredictable, in the absence of further processing. Additionally, more than 190 Mt of legacy iron and steel slag are present across the country. The UK's cement industry is set to cut 4.2 MtCO2 emissions per year by 2050, about half of which is to be gained by resource efficiency in cement plants. Every year, the UK cement sector consumes ~12.5 Mt of natural raw materials, which can potentially be substituted with by-products that the steel sector produces. These materials contain the key elements that are essential to cement making, but they also have an unusually high amount of iron. FeRICH aims to replace the natural raw materials used in Portland cement making by valorising and upcycling iron-rich waste materials from the steel industry. This leads to cements containing an unprecedented level of [calcium] ferrites; however, our understanding of ferrite chemistry is still incomplete, and we need to establish what happens to this phase both during cement production and after use. These side streams also constitute other minor elements that are likely to alter the cement chemistry. Therefore, we need to develop the knowledge underpinning the interdependency between the role of minor elements in ferrite chemistry, what controls the reaction of ferrite with water over time alone or in mixture with other phases occurring in cement, and importantly, the long-term durability of ferrite-rich cement. Along with this, we also need to develop modelling tools to be able to predict the relationship between these factors - FeRICH relies on thermodynamics as a powerful technique here. We also recognise that ferrite-rich cements are ferromagnetic, and this property can add functional properties to cement (or subsequently to concrete) which may be exploited throughout the materials lifetime: form manufacturing to both their service life and end of life. FeRICH will develop and validate data-for-manufacturing of ferrite rich Portland cement. From reactions at high temperature in kilns to reaction with water at ambient temperatures, we will establish the best cement making conditions and materials compositions to achieve maximum process, energy and resource efficiency in kilns and cement performance upon reaction with water. For the first time, we will also examine the electromagnetic properties of ferrites related to cement, laying down the foundation for building intelligent systems in the future infrastructure. The findings and data developed in this project will be assimilated into tools that will accelerate the uptake of iron rich wastes in cement making. FeRICH will reduce the environmental burden of the cement industry and drive the steel industry towards zero-waste through implementation of the circular economy strategy. This will help alleviate the current crisis in the UK steel industry whose competitiveness in the global market is inhibited by a higher overhead costs than other countries. The results will allow for the use of other iron-rich materials for cement making, in the UK and worldwide.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::bee173599028bcbb2d25eb65b1907c70&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::bee173599028bcbb2d25eb65b1907c70&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2020Partners:Liberty House Group, Liberty House Group (UK) (replace), Tata Group UK, British Steel Ltd, University of Warwick +3 partnersLiberty House Group,Liberty House Group (UK) (replace),Tata Group UK,British Steel Ltd,University of Warwick,British Steel (United Kingdom),University of Warwick,Tata Steel (United Kingdom)Funder: UK Research and Innovation Project Code: EP/S013318/1Funder Contribution: 408,703 GBPThere is a significant future UK demand opportunity for the UK steel industry, and a sustainable UK steel industry is vitally important to the UK's future growth prospects especially considering the now independent trading market the country is moving into. On the other hand, steel production is a major industrial contributor to CO2 emissions with on average 1.8 tonnes of CO2 produced per tonne of rolled coil via the integrated BF-BOF (blast furnace-basic oxygen furnace) route, while the scrap-based EAF (electric arc furnace) route in general only produces a quarter of the CO2 emissions compared to the BF-BOF route. Crude steel was produced in the UK at about 80-20% split between the BF-BOF integrated route and scrap-based EAF route, respectively. The UK steel industry is being affected by grand trends and challenges, for example, strict environmental regulations, new energy and materials sources, global over-capacity and ever increasing customer requirements for high quality steel products. Additionally, it faces these challenges with little/no natural resources and higher energy cost compared to the EU and wider global competitors. However, with a potential change in technology strategy, significant advantages can be made through the exploitation of the abundant supply of UK generated steel scrap. The prospect of moving to a scrap-based EAF industry as a low CO2 production pathway has been widely discussed because of the success of the business model in the US (e.g. Nucor) and Middle Eastern countries such as Turkey. This, linked with the current over-supply of steel scrap in the UK and its projected growth in quantity into the 2020's, gives, at the surface, a motivation for a scrap-based manufacturing route. However although the needed physical mass of scrap to cover UK supply requirements is likely to be available, the quality and thus applicability to the specific use of steel in our society is yet unknown. Currently the EAF route cannot produce certain high quality steel grades that the BF-BOF route is capable of, such as the high quality strip steels required by the automotive industry, a significant UK user of UK produced steel. In addition any viable UK steel industry needs to consider the current asset base and future UK energy strategy (for example, EAF route requires significantly higher electrical energy input). Therefore consideration of how different processing routes currently use scrap and can respond to higher scrap use (including the potential variability in scrap quality) is needed, along with an assessment of new technologies for scrap handling / sorting and steel manufacturing, all in the UK context. The proposed research aims to evaluate the potential viable steel manufacturing routes in the UK, which can maximise the use of the abundant UK steel scrap supply for the production of high quality steel grades, meet the UK economic development (domestic consumption and export), and achieve a low carbon steel industry. Three process routes will be assessed from a technology point of view: the BF-BOF route, an alternative ironmaking-BOF route, and the scrap-based EAF route. The project team will evaluate the distribution of scrap sources through levels of quality in a manner meaningful to the UK steel sector, including quality and accessibility while categorizing these against required outputs by different industrial sectors through the three identified potential process routes. New technologies for better scrap sorting and composition control, new steel manufacturing technologies with the potential to accommodate high residual scrap, and novel supply chain design will be explored. The proposed research will give a clear outline of a viable UK steel industry in the future and point out scientific and technological developments required to ensure the viability of the UK steel industry.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::bc51077ad2e98f209dec96859bf842a1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::bc51077ad2e98f209dec96859bf842a1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2024Partners:University of Salford, British Steel (United Kingdom), The Spanish National Reserach Council, Tata Group UK, CSIC +4 partnersUniversity of Salford,British Steel (United Kingdom),The Spanish National Reserach Council,Tata Group UK,CSIC,The University of Manchester,University of Manchester,Tata Steel (United Kingdom),British Steel LtdFunder: UK Research and Innovation Project Code: EP/S030654/1Funder Contribution: 857,503 GBPIron and steel is the largest UK manufacturing industry in terms of energy demand and greenhouse gas (GHG) emissions. Currently, more than 6 Mt of steel per year are produced in six blast furnaces at two steelworks with specific energy consumptions of 19 GJ/t of steel and overall direct CO2 emissions of 13 Mt, contributing 25% to GHG emissions from UK manufacturing. Combustion of blast furnace gas (BFG) in the power station causes ~ 50% of CO2 emissions. In BREIN-STORM we propose to convert the BFG from steel mills into valuable products, such as hydrogen and pure carbon dioxide. This will be achieved by combining calcium and chemical looping gas-solid reactions (CaL-CLC). This four-year project comprises four interlinked work packages (WPs): 1. WP1 will develop and scale up different multi-functional materials based on calcium oxide as sorbent and copper-oxide oxygen carriers. We will focus on increasing the stability over cycling operation and the sorption capacity of the materials. The produced material will be tested and characterised to examine longevity. The kinetics models will be derived to enable the scale up. 2. WP2 will focus on the development and testing of the reactor. We will carry out the experimental demonstration and long-term testing under different reactive conditions in packed and fluidised bed configurations. The experimental results will be used to validate the reactor model. The knowledge gained both from the experimental and numerical activities will be used as guidance for future pilot-scale demonstration of the technology. 3. In WP3, the CaL-CLC process will be integrated into the steelworks through a conceptual design. The techno-economic performance of the process will be compared with standard state-of-the-art technologies in the steel sector. The integration of renewables sources will be studied with the aim of designing a first 'green' steelworks plant. 4. In WP4, the developed process will be evaluated on environmental impacts as well as social and policy implications.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::714f442726e50e2bfbb12d26b49a6c1c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::714f442726e50e2bfbb12d26b49a6c1c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2024Partners:Hanson Heidelberg Cement Group, University of Sheffield, British Steel Ltd, [no title available], Hanson Heidelberg Cement Group +5 partnersHanson Heidelberg Cement Group,University of Sheffield,British Steel Ltd,[no title available],Hanson Heidelberg Cement Group,RWTH,Flemish Institute for Technological Research,VITO (Flemish Institute of Technology),University of Sheffield,British Steel (United Kingdom)Funder: UK Research and Innovation Project Code: EP/W018810/1Funder Contribution: 1,392,720 GBPThe cement and steel sectors are foundational to the UK, are the largest manufacturing industries (by mass), and are essential to construct our infrastructure. Cement manufacture is intensive in resources, carbon, and energy, and needs radical transformation to achieve sustainability. The steel industry produces up to 1M tonnes of steel making by-products annually, and into the foreseeable future. These waste materials need to be managed properly to improve resource efficiency, and to avoid landfill and subsequent ecotoxicity. Although effective utilisation of steel slags is ~80%, a large portion is unutilised. Moreover, the majority of slag utilisation is for low-value products, e.g. aggregate, but their chemistry and mineralogy are variable, making their effects on material properties unpredictable, in the absence of further processing. Additionally, more than 190 Mt of legacy iron and steel slag are present across the country. The UK's cement industry is set to cut 4.2 MtCO2 emissions per year by 2050, about half of which is to be gained by resource efficiency in cement plants. Every year, the UK cement sector consumes ~12.5 Mt of natural raw materials, which can potentially be substituted with by-products that the steel sector produces. These materials contain the key elements that are essential to cement making, but they also have an unusually high amount of iron. FeRICH aims to replace the natural raw materials used in Portland cement making by valorising and upcycling iron-rich waste materials from the steel industry. This leads to cements containing an unprecedented level of [calcium] ferrites; however, our understanding of ferrite chemistry is still incomplete, and we need to establish what happens to this phase both during cement production and after use. These side streams also constitute other minor elements that are likely to alter the cement chemistry. Therefore, we need to develop the knowledge underpinning the interdependency between the role of minor elements in ferrite chemistry, what controls the reaction of ferrite with water over time alone or in mixture with other phases occurring in cement, and importantly, the long-term durability of ferrite-rich cement. Along with this, we also need to develop modelling tools to be able to predict the relationship between these factors - FeRICH relies on thermodynamics as a powerful technique here. We also recognise that ferrite-rich cements are ferromagnetic, and this property can add functional properties to cement (or subsequently to concrete) which may be exploited throughout the materials lifetime: form manufacturing to both their service life and end of life. FeRICH will develop and validate data-for-manufacturing of ferrite rich Portland cement. From reactions at high temperature in kilns to reaction with water at ambient temperatures, we will establish the best cement making conditions and materials compositions to achieve maximum process, energy and resource efficiency in kilns and cement performance upon reaction with water. For the first time, we will also examine the electromagnetic properties of ferrites related to cement, laying down the foundation for building intelligent systems in the future infrastructure. The findings and data developed in this project will be assimilated into tools that will accelerate the uptake of iron rich wastes in cement making. FeRICH will reduce the environmental burden of the cement industry and drive the steel industry towards zero-waste through implementation of the circular economy strategy. This will help alleviate the current crisis in the UK steel industry whose competitiveness in the global market is inhibited by a higher overhead costs than other countries. The results will allow for the use of other iron-rich materials for cement making, in the UK and worldwide.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8c9358158b0cdab42b7ed755e29e6044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8c9358158b0cdab42b7ed755e29e6044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right