Powered by OpenAIRE graph
Found an issue? Give us feedback

New Venture Partners

Country: United Kingdom

New Venture Partners

1 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/J013609/1
    Funder Contribution: 116,467 GBP

    There has been significant research investment into alternative methods of energy production that reduce our dependence on fossil fuels. With the exception of nuclear or neo-fossil fuels (e.g. biofuels), these resources (e.g. solar, wind) are neither generated nor converted into useful forms of energy (electric or mechanical) at the 'point of use' or 'on-demand' and require storage and a substantial delivery network. Battery technology will be an intrinsic part of the development of alternative energy strategies. However battery technology, whilst boasting large storage capability, is an essentially electrochemical process, and requires significant charging-up times. Therefore one cannot currently recharge electric car batteries as quickly as filling up a car with petrol. Equally, low capacity and high recharge-times of batteries in mobile devices (lap-tops, mobile phones) limits their ability to contain more functionality. It is obvious that the next breakthrough technology in mobile devices will be in their power packs. Supercapacitors are strong contenders to provide both high capacity and fast storage/release of energy. Capacitors, as every sixth form science student is aware, can store charge between two electrodes separated by an insulator (the dielectric). The key difference in supercapacitors is that the dielectric is an inherent part of each electrode, and charge is stored within nanoporous pathways within the dielectric. Moving or storing charge without an electrochemical change ( the method of storage in conventional batteries) means supercapacitor charge/discharge rates are fast leading to high power densities. Therefore supercapacitors using dielectrics with large surface area densities (i.e. internal surface per unit volume) from nanoporous materials will have energy densities resembling batteries whilst retaining the fast discharge/charge rates of supercapacitors. In this proposal, we use a radical new patented technology to generate dielectrics with high surface area densities. This is accomplished by introducing highly interconnected nanoscale pores into the materials in a controlled, reliably repeatable way. Certainly making nanoporous materials is not a new idea in itself. However existing methods are either expensive, or too unreliable. Our patent describes a way to do this, that using cheap materials, fast process-times and good reproducibility. This will be important in taking supercapacitor technology, which has been proved in the laboratory, and making it economically viable as a consumer product.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.