
NSG Group (UK)
NSG Group (UK)
36 Projects, page 1 of 8
assignment_turned_in Project2021 - 2025Partners:Oxford Lasers Ltd, Glass Technology Services Ltd GTS, Glass Technology Services Ltd GTS, NSG Holding (Europe) Limited, MTC +8 partnersOxford Lasers Ltd,Glass Technology Services Ltd GTS,Glass Technology Services Ltd GTS,NSG Holding (Europe) Limited,MTC,The Manufacturing Technology Centre Ltd,Leonardo MW Ltd,Heriot-Watt University,Luxinar Limited,NSG Group (UK),Heriot-Watt University,Luxinar Limited,OXFORDFunder: UK Research and Innovation Project Code: EP/V01269X/1Funder Contribution: 974,286 GBPBonding optical materials (glasses, crystals) to other optical or structural materials (metals, ceramics) is a key manufacturing challenge for many optical devices, as clearly articulated by our industrial partners. Our solution is to use an ultra-short pulsed laser welding process that has shown great promise but currently requires many months or even years of detailed experiments for each new material combination and geometry. Hence applications are currently limited to components made from borosilicate glasses or quartz welded to aluminium alloys and stainless steel, of typical dimension 10 mm. In this project our drive is to extend the process to new combinations of materials (including important IR materials) and shapes. To achieve this, the project will take a multi-pronged approach: (i) to create the modelling and sensing tools essential for rapid process optimisation; (ii) to engineer a new optimised laser source based on emerging 2 micron wavelength technologies, pioneering the welding process for IR optical materials; (iii) to research concepts for engineering the interface and weld/joint geometry to reduce the impact of differential thermal properties of the two materials; and (iv) to investigate scaleable welding approaches for larger parts e.g. continuous meander patterns and dynamic clamping. Finally, we will undertake a series of proof-of-principle experiments to determine the suitability of the process with a wide range of material combinations, directed towards our industrial partners' applications. Our programme of manufacturing research is aligned with the interests of our industrial collaborators, together with the academic drivers of laser material interaction knowledge, process understanding and process control. Our ultimate goal is to develop this welding process into a truly flexible and generic solution for joining optical to structural materials at a range of scales.
more_vert assignment_turned_in Project2014 - 2023Partners:Shell Research UK, Shell Global Solutions UK, Accelrys Limited, UNILEVER U.K. CENTRAL RESOURCES LIMITED, Janssen Pharmaceutical +36 partnersShell Research UK,Shell Global Solutions UK,Accelrys Limited,UNILEVER U.K. CENTRAL RESOURCES LIMITED,Janssen Pharmaceutical,Tata Steel Packaging,AWE,Shell Global Solutions UK,Royal Society of Chemistry,Royal Society of Chemistry Publishing,NSG Holding (Europe) Limited,Janssen Pharmaceutica NV,ASTRAZENECA UK LIMITED,Granta Design (United Kingdom),Orica Australia,SKF Group (UK),AWE plc,Orica Australia,CCDC,BP (International),Infochem Computer Services Ltd,SCR,Astrazeneca,Lhasa Limited,Royal Society of Chemistry,SKF Group,Granta Design Ltd,UNIVERSITY OF CAMBRIDGE,University of Cambridge,BP British Petroleum,Cambridge Integrated Knowledge Centre,Tata Steel Packaging,Dassault Systèmes (United Kingdom),Accelrys Limited,NSG Group (UK),Schlumberger Cambridge Research Limited,Cambridge Crystallographic Data Centre,AstraZeneca plc,Infochem Computer Services Ltd,Unilever (United Kingdom),Unilever UK Central Resources LtdFunder: UK Research and Innovation Project Code: EP/L015552/1Funder Contribution: 4,544,990 GBPMoore's Law states that the number of active components on an microchip doubles every 18 months. Variants of this Law can be applied to many measures of computer performance, such as memory and hard disk capacity, and to reductions in the cost of computations. Remarkably, Moore's Law has applied for over 50 years during which time computer speeds have increased by a factor of more than 1 billion! This remarkable rise of computational power has affected all of our lives in profound ways, through the widespread usage of computers, the internet and portable electronic devices, such as smartphones and tablets. Unfortunately, Moore's Law is not a fundamental law of nature, and sustaining this extraordinary rate of progress requires continuous hard work and investment in new technologies most of which relate to advances in our understanding and ability to control the properties of materials. Computer software plays an important role in enhancing computational performance and in many cases it has been found that for every factor of 10 increase in computational performance achieved by faster hardware, improved software has further increased computational performance by a factor of 100. Furthermore, improved software is also essential for extending the range of physical properties and processes which can be studied computationally. Our EPSRC Centre for Doctoral Training in Computational Methods for Materials Science aims to provide training in numerical methods and modern software development techniques so that the students in the CDT are capable of developing innovative new software which can be used, for instance, to help design new materials and understand the complex processes that occur in materials. The UK, and in particular Cambridge, has been a pioneer in both software and hardware since the earliest programmable computers, and through this strategic investment we aim to ensure that this lead is sustained well into the future.
more_vert assignment_turned_in Project2020 - 2025Partners:NSG Holding (Europe) Limited, Yorkshire Photonic Technology Ltd, UNIVERSITY OF EXETER, University of Exeter, Yorkshire Photonic Technology Ltd +2 partnersNSG Holding (Europe) Limited,Yorkshire Photonic Technology Ltd,UNIVERSITY OF EXETER,University of Exeter,Yorkshire Photonic Technology Ltd,NSG Group (UK),University of ExeterFunder: UK Research and Innovation Project Code: EP/T025875/1Funder Contribution: 1,338,140 GBPEnergy consumed by buildings for heating, cooling, and lighting needs, accounts for more than 40% CO2 emissions. However, while keeping the thermal and visual comfort, a substantial portion of energy is lost due to our inability to control the ingress and egress of energy through transparent building envelope - mainly windows and facades. The UK government's ambitious target of reaching zero emission by 2050 cannot be achieved without controlling ingress and egress of energy through buildings. By 2050, 85% of the existing building stock will still be in use which indicates that retrofitting of building envelope is indispensable. Among the other building envelope, windows and facades are the least energy efficient but are easily replaceable. Glazing technology plays an important role in determining a building's energy performance, required to perform multiple roles of regulating heat transfer by conduction convection, solar and long wave radiation between internal and external environments while maintaining comfortable daylight environments by allowing the transmittance of natural daylight; reducing the need for supplementary electric lighting. The windows and facades also play an important aesthetic function by providing occupants a visual link to the external environment and influencing the appearance of buildings. Thus, developing new smart glazing technology for windows and facades to modulate the incoming and outgoing heat into indoor space to reduce building energy load, while at the same time providing visual comfort, is crucial. The proposed project aims to undertake an ambitious innovative research program of developing new technology to significantly reduce energy demand in the built environment at an acceptable cost. The goal will be achieved by reducing heat loss, controlling incoming solar radiation to maximise solar gain, minimise heat loss in winter and reverse it by flipping windows in summer while ensuring the best natural lighting conditions with no glare. The overarching goal of energy efficacy and visual comfort will be achieved by smart composite material in which each elements of composite will bring a unique property and contribute to enhance energy efficiency of windows and facades. In winter, the TIA will absorb external IR radiations and transfer heat to PCM for storage, which will be released back to the building, the TIM in composite will forbid heat loss through longwave thermal radiation and the IR reflective coating will prevent heat loss by reflecting IR back to room. In summer, the orientation will be flipped around to reduce cooling load. In the flipped case, heat gain by IR will be prevented by IR reflective layer while the TCM will regulator the transparency to control the indoor temperature constant. The multi-fold smart composite developed in this research program. This will enable advanced glazing technology to achieve U-values down to 0.4 W/m2K1 while maintaining comfortable daylight environments and reduce annual energy consumption by 30-40% for buildings. The outcome of this research will enable us to create technological pathways towards achieving energy positive buildings in the UK.
more_vert assignment_turned_in Project2021 - 2023Partners:UA, UCA, University of Liverpool, Henry Royce Institute, University of Strasbourg +28 partnersUA,UCA,University of Liverpool,Henry Royce Institute,University of Strasbourg,Loughborough University,NUS,NSG Holding (Europe) Limited,University of Liverpool,The Rosalind Franklin Institute,UU,The University of Arizona,NEU,Henry Royce Institute,UCB,Johnson Matthey,Saarland University,CNR,National Research Council (CNR) Italy,University of Colorado at Boulder,University of Ulster,UK SuperSTEM Laboratory,The Rosalind Franklin Institute,University of Strasbourg,UK SuperSTEM Laboratory,NSG Group (UK),Northwestern University,Johnson Matthey Plc,Trinity College Dublin, Ireland,National Research Council,Loughborough University,Johnson Matthey plc,Saarland UniversityFunder: UK Research and Innovation Project Code: EP/V05385X/1Funder Contribution: 4,847,940 GBPWe will install a 300kV aberration corrected STEM that utilises artificial intelligence (AI) to simultaneously improve the temporal resolution and precision/sensitivity of images while minimizing the deleterious effect of electron beam damage. Uniquely, this microscope goes beyond post-acquisition uses of AI, and integrates transformational advances in data analytics directly into its operating procedures - experiments will be designed by and for AI, rather than by and for a human operator's limited visual acuity and response time. This distributed algorithm approach to experimental design, is accomplished through a compressed sensing (CS) framework that allows measurements to be obtained under extremely low dose and/or dose rate conditions with vastly accelerated frame rates. Optimizing dose / speed / resolution permits diffusion to be imaged on the atomic scale, creating wide-ranging new opportunities to characterise metastable and kinetically controlled materials and processes at the forefront of innovations in energy storage and conversion, and the wide range of novel engineering/medical functionalities created by nanostructures, composites and hybrid materials. The microscope incorporates in-situ gas / liquid / heating / cryo and straining / indentation stages to study the dynamics of synthesis, function, degradation / corrosion and regeneration / recycling on their fundamental length and time scales. It will be housed in the Albert Crewe Centre (ACC), which is a University of Liverpool (UoL) shared research facility (SRF) specialising in new experimental strategies for high-resolution/operando electron microscopy in support of a wide range of academic/industrial user projects. UoL supports all operational costs for the SRFs (service contracts, staff, consumables, etc), meaning that access to the microscope will always be "free at the point of use" for all academic users. This open accessibility is managed through a user-friendly online proposal submission and independent peer review mechanism linked to an adaptable training/booking system, which allows the ACC to provide extensive research opportunities and training activities for all users. In particular, for early career scientists, we commit experimental resources supporting UoL's commitment to the Prosper project for flexible career development and the Research Inclusivity in a Sustainable Environment (RISE) initiative that is creating a research culture maximising inclusivity and diversity synergistically with encouraging creativity and innovation. This new microscope aligns to several priority areas of research into materials, energy and personalised medicine at the UoL, priority research areas of EPSRC and national facilities in electron microscopy, imaging and materials science, and UKRI plans for infrastructure growth (https://www.ukri.org/research/infrastructure/). In addition to supporting extensive research programs at UoL linked to investments in the Materials Innovation factory (MIF), the Stephenson Institute for Renewable Energy (SIRE) and the new Digital Innovation Facility (DIF), this unique and complimentary microscope will be affiliated to and leverage from partnership with the national microscopy facilities at Harwell (ePSIC) and Daresbury (UKSuperSTEM) and the Henry Royce Institute, as well as form extensive research links to the Rosalind Franklin Institute and the Faraday Institution. We have established (and will expand through outreach activities) an extensive network of partners/collaborators from the N8 university group, Johnson Matthey and NSG, the Universities of Swansea, Birmingham, Warwick, Oxford, Cambridge, Loughborough, Edinburgh and Glasgow and Northwest UK area SME's as well as from universities in the USA, Ireland, Germany, Japan, France, Italy, Denmark, India, Singapore, China, South Africa and Spain who will create a dynamic, innovative and collaborative community driving the long-term research impact of this facility.
more_vert assignment_turned_in Project2014 - 2020Partners:Taylor Hobson Ltd, Eight19 Ltd, NSG Holding (Europe) Limited, University of Liverpool, Silicon Cpv Ltd +22 partnersTaylor Hobson Ltd,Eight19 Ltd,NSG Holding (Europe) Limited,University of Liverpool,Silicon Cpv Ltd,Echerkon Technologies Ltd,BAE Systems (United Kingdom),Bae Systems Defence Ltd,Eight19 Ltd,Power Vision Limited,Silicon CPV PLC,Oxford Photovoltaics Ltd,Oxford Nanoscience,Ossila Ltd.,McCamley Middle East Ltd UK,Echerkon Technologies Ltd,McCamley Middle East Ltd UK,NSG Group (UK),University of Liverpool,Oxford Photovoltaics (United Kingdom),BAE Systems (Sweden),M-Solv Ltd,Taylor Hobson Ltd,Power Vision Limited,Ossila Ltd.,BAE Systems (UK),M-Solv LimitedFunder: UK Research and Innovation Project Code: EP/L01551X/1Funder Contribution: 5,326,780 GBPWe propose a Centre for Doctoral Training in New and Sustainable PV. It will support the transformation of PV in the UK will that will in turn aid the country to achieve its renewal energy obligations, and will generate jobs in the technology sectors as well as local manufacturing and installation. The CDT allows for the distributed nature of PV research in the UK with a multi-centre team of seven partners covering all aspects of PV research from novel materials through new device architectures to PV systems and performance. The PhD projects and training span engineering and physical science expertise in materials and device physics, electronic engineering, physical and synthetic chemistry, operations management and manufacturing. The CDT graduates will be capable of transforming state of the art R&D across the PV technologies and, in so doing, contribute to the production and implementation of improved PV products and systems. All partners are members of the SuperSolar Hub and hence already coordinate integrated PV research and training. Students in the CDT will join a thriving research community. The team has unrivalled access to shared facilities in the best state of the art laboratories in the UK. Our group approach brings together expertise with a breadth and depth for training and research that could not be assembled in any other way. Moreover, the collaboration allows us to cut across the traditional boundaries in PV and enables exciting research vectors to be followed in New and Sustainable PV CDT agenda. International collaborations and formal exchange agreements will emphasise the global aspects of advanced research that are important for the development of a leadership group. The CDT members will interact with related research themes such as photochemical conversion of fuels for energy and other applications, and heating and cooling by solar radiation and will be a proactive member of the UK wide Network of Energy CDTs. Our goal is to train the best researchers with a flexible mindset able to communicate across different disciplines and be leaders in the emerging PV industry for advanced technologies. We will provide the training required for graduates to join the sustainable energy and PV sectors. We will establish a real identity of purpose and commonality in each cohort through a training programme designed to give students an understanding of all aspects of PV, including implications for society and an experience of a commercial environment. Students will be provided with a bespoke curriculum and training programme that exposes them to: (i) underpinning fundamentals across all the relevant disciplines, (ii) current state-of-the-art in knowledge and challenges in scale-up and systems, and (iii) unparalleled opportunities to engage in leading-edge interdisciplinary research projects as part of a national team. We will create a doctoral training environment in which students benefit from leading academic expertise and world-class facilities to develop their knowledge as well as the tools to innovate and create within their selected research theme. The unique cross functional skill-sets that our graduates will have will make them highly valuable to the academic community seeking to address ambitious basic manufacturing research challenges, and to industry, who have an urgent need for appropriately trained scientists and engineers able to support PV technologies within their commercial operations. To allow the students the chance to develop a common sense of purpose, each cohort will attend training events together. Courses will cover fundamental aspects common to all PV technologies and also advanced courses based on the partners' research expertise. There will be industrial and international placements. Coherence across the CDT will be aided by a virtual collaboration medium containing webinars and video lectures and pages where students and staff can collaborate via groups, and online forums.
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right