
University of North Dakota
University of North Dakota
2 Projects, page 1 of 1
assignment_turned_in Project2014 - 2024Partners:McMaster University, Innospec Environmental Ltd, E.ON New Build and Technology Ltd, Innospec Environmental Ltd, Innospec (United Kingdom) +92 partnersMcMaster University,Innospec Environmental Ltd,E.ON New Build and Technology Ltd,Innospec Environmental Ltd,Innospec (United Kingdom),ZJOU,C-Capture Limited,ETI,Process Systems Enterprises Ltd,E.ON New Build and Technology Ltd,EDF Energy (United Kingdom),NPL,Cochin University,University of the Witwatersrand,Air Products and Chemicals plc,RWE npower,Chinese Academy of Science,SMRE,Scottish and Southern Energy SSE plc,British Energy Generation Ltd,ANSYS UK LIMITED,E-ON UK plc,Alstom Ltd (UK),State University of Campinas (unicamp),National Carbon Institute (CSIC),EDF Energy Plc (UK),Indian Institute of Technology Guwahati,Scottish and Southern Energy SSE plc,National Physical Laboratory NPL,Southeast University,Chinese Academy of Sciences,Alstom (United Kingdom),Doosan (United Kingdom),Electric Power Research Institute EPRI,Advanced Power Generation Tech. Forum,2COenergy Limited,University of North Dakota,SIEMENS PLC,Air Products and Chemicals plc,Clean Coal Limited,2COenergy Limited,Biomass and Fossil Fuel Res Alliance,University of the Witwatersrand,Cochin University of Science and Technol,PNU,National Carbon Institute (CSIC),SEU,BF2RA,Doosan Power Systems,Johnson Matthey Plc,Advanced Power Generation Tech. Forum,University of Nottingham,PAU,Clean Coal Limited,Caterpillar Inc (Global),Huazhong University of Sci and Tech,University of Queensland,Johnson Matthey plc,UiS,NTU,XJTLU,Scottish and Southern Energy,Doosan Babcock Power Systems,ANSYS UK LIMITED,Energy Technologies Institute (ETI),CAS,Electric Power Research Institute EPRI,The University of Queensland,C-Capture Limited,Islamic University of Technology,UK High Temperature Power Plant Forum,Caterpillar UK Ltd,UK High Temperature Power Plant Forum,Health and Safety Executive (HSE),CMCL Innovations (United Kingdom),Polish Academy of Sciences,Health and Safety Executive,Xi'an Jiatong University,Coal Products Limited CPL,Tsinghua University,Process Systems Enterprises Ltd,University of North Dakota,CMCL Innovations,ISLAMIC UNIVERSITY OF TECHNOLOGY,Johnson Matthey,Alstom Ltd (UK),RWE Generation,Fluent Europe Ltd,State University of Campinas (UNICAMP),Siemens plc (UK),Indian Institute of Technology Guwahati,University of Queensland,Zhejiang University,Air Products (United Kingdom),Xi'an Jiaotong University,Tsinghua University,Coal Products Limited CPLFunder: UK Research and Innovation Project Code: EP/L016362/1Funder Contribution: 3,527,890 GBPThe motivation for this proposal is that the global reliance on fossil fuels is set to increase with the rapid growth of Asian economies and major discoveries of shale gas in developed nations. The strategic vision of the IDC is to develop a world-leading Centre for Industrial Doctoral Training focussed on delivering research leaders and next-generation innovators with broad economic, societal and contextual awareness, having strong technical skills and capable of operating in multi-disciplinary teams covering a range of knowledge transfer, deployment and policy roles. They will be able to analyse the overall economic context of projects and be aware of their social and ethical implications. These skills will enable them to contribute to stimulating UK-based industry to develop next-generation technologies to reduce greenhouse gas emissions from fossil fuels and ultimately improve the UK's position globally through increased jobs and exports. The Centre will involve over 50 recognised academics in carbon capture & storage (CCS) and cleaner fossil energy to provide comprehensive supervisory capacity across the theme for 70 doctoral students. It will provide an innovative training programme co-created in collaboration with our industrial partners to meet their advanced skills needs. The industrial letters of support demonstrate a strong need for the proposed Centre in terms of research to be conducted and PhDs that will be produced, with 10 new companies willing to join the proposed Centre including EDF Energy, Siemens, BOC Linde and Caterpillar, together with software companies, such as ANSYS, involved with power plant and CCS simulation. We maintain strong support from our current partners that include Doosan Babcock, Alstom Power, Air Products, the Energy Technologies Institute (ETI), Tata Steel, SSE, RWE npower, Johnson Matthey, E.ON, CPL Industries, Clean Coal Ltd and Innospec, together with the Biomass & Fossil Fuels Research Alliance (BF2RA), a grouping of companies across the power sector. Further, we have engaged SMEs, including CMCL Innovation, 2Co Energy, PSE and C-Capture, that have recently received Department of Energy and Climate Change (DECC)/Technology Strategy Board (TSB)/ETI/EC support for CCS projects. The active involvement companies have in the research projects, make an IDC the most effective form of CDT to directly contribute to the UK maintaining a strong R&D base across the fossil energy power and allied sectors and to meet the aims of the DECC CCS Roadmap in enabling industry to define projects fitting their R&D priorities. The major technical challenges over the next 10-20 years identified by our industrial partners are: (i) implementing new, more flexible and efficient fossil fuel power plant to meet peak demand as recognised by electricity market reform incentives in the Energy Bill, with efficiency improvements involving materials challenges and maximising biomass use in coal-fired plant; (ii) deploying CCS at commercial scale for near-zero emission power plant and developing cost reduction technologies which involves improving first-generation solvent-based capture processes, developing next-generation capture processes, and understanding the impact of impurities on CO2 transport and storage; (iimaximising the potential of unconventional gas, including shale gas, 'tight' gas and syngas produced from underground coal gasification; and (iii) developing technologies for vastly reduced CO2 emissions in other industrial sectors: iron and steel making, cement, refineries, domestic fuels and small-scale diesel power generatort and These challenges match closely those defined in EPSRC's Priority Area of 'CCS and cleaner fossil energy'. Further, they cover biomass firing in conventional plant defined in the Bioenergy Priority Area, where specific issues concern erosion, corrosion, slagging, fouling and overall supply chain economics.
more_vert assignment_turned_in Project2019 - 2027Partners:University of Queensland, State University of Campinas, University of Graz, University of North Dakota, Perceptive Engineering Limited +50 partnersUniversity of Queensland,State University of Campinas,University of Graz,University of North Dakota,Perceptive Engineering Limited,CCDC,Swagelok Manchester,Innospec Environmental Ltd,The University of Queensland,Keracol Limited,,Cambridge Crystallographic Data Centre,Swagelok Manchester,University of Leeds,ASTRAZENECA UK LIMITED,UK-CPI (dup'e),Venator,Campinas State University,Pfizer,University of Queensland,Syngenta Ltd,Xeros Ltd,Biome Technologies,Syngenta Ltd,Biome Technologies,SouthernUniversity of Science&Technology,Universidade Estadual de Campinas,Keracol Limited,,Sterling Pharma Solutions Ltd.,Pfizer,Perceptive Engineering Limited,South Uni of Sci and Tech of China SUST,Infineum UK,Diamond Light Source,Graz University,Max-Planck-Gymnasium,Sterling Pharma Solutions Ltd.,Britest Limited,Croda (United Kingdom),Astrazeneca,Croda International Plc,Procter & Gamble Limited (P&G UK),BRITEST Ltd,PROCTER & GAMBLE TECHNICAL CENTRES LIMITED,AstraZeneca plc,Max Planck Institutes,Venator,Xeros Ltd,Diamond Light Source,UK-CPI,Infineum UK Ltd,University of Leeds,Innospec (United Kingdom),CRODA INTERNATIONAL PLC,University of North Dakota,Innospec Environmental LtdFunder: UK Research and Innovation Project Code: EP/S022473/1Funder Contribution: 5,345,840 GBPThe CDT in Molecules to Product addresses an overarching concern articulated by industry operating in the area of complex chemical products. It centres on the lack of a pipeline of doctoral graduates who understand the cross-scale issues that need to be addressed within the chemicals continuum. Translating their concern into a vision, the focus of the CDT is to train a new generation of research leaders with the skills and expertise to navigate the journey from a selected molecule or molecular system through to the final product that delivers the desired structure and required performance. To address this vision, three inter-related Themes form the foundation of the CDT - Product Functionalisation and Performance, Product Characterisation, and Process Modelling between Scales. More specifically, industry has identified a real need to recruit PGR graduates with the interdisciplinary skills covered by the CDT research and training programme. As future leaders they will be instrumental in delivering enhanced process and product understanding, and hence the manufacture of a desired end effect such as taste, dissolution or stability. For example, if industry is better informed regarding the effect of the manufacturing process on existing products, can the process be made more efficient and cost effective through identifying what changes can be made to the current process? Alternatively, if there is an enhanced understanding of the effect of raw materials, could stages in the process be removed, i.e. are some stages simply historical and not needed. For radically new products that have been developed, is it possible through characterisation techniques to understand (i) the role/effect of each component/raw material on the final product; and (ii) how the product structure is impacted by the process conditions both chemical and mechanical? Finally, can predictive models be developed to realise effective scale up? Such a focus will assist industry to mitigate against wasted development time and costs allowing them to focus on products and processes where the risk of failure is reduced. Although the ethos of the CDT embraces a wide range of sectors, it will focus primarily on companies within speciality chemicals, home and personal care, fast moving consumer goods, food and beverage, and pharma/biopharma sectors. The focus of the CDT is not singular to technical challenges: a core element will be to incorporate the concept of 'Education for Innovation' as described in The Royal Academy of Engineering Report, 'Educating engineers to drive the innovation economy'. This will be facilitated through the inclusion of innovation and enterprise as key strands within the research training programme. Through the combination of technical, entrepreneurial and business skills, the PGR students will have a unique set of skills that will set them apart from their peers and ultimately become the next generation of leaders in industry/academia. The training and research agendas are dependent on strong engagement with multi-national companies, SMEs, start-ups and stakeholders. Core input includes the offering, and supervision of research projects; hosting of students on site for a minimum period of 3 months; the provision of mentoring to students; engagement with the training through the shaping and delivery of modules and the provision of in-house courses. Additional to this will be, where relevant, access to materials and products that form the basis of projects, the provision of software, access to on-site equipment and the loan of equipment. In summary, the vision underpinning the CDT is too big and complex to be tackled through individual PhD projects - it is only through bringing academia and industry together from across multiple disciplines that a solution will be achievable. The CDT structure is the only route to addressing the overarching vision in a structured manner to realise delivery of the new approach to product development.
more_vert