Powered by OpenAIRE graph
Found an issue? Give us feedback

MV Portfolios Inc

MV Portfolios Inc

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/N017188/1
    Funder Contribution: 5,296,040 GBP

    Put your hand under a working laptop computer and you'll find that it's warm, due to the heat produced by the transistors in it. This isn't just a problem for your own computer: nearly 5% of the world's electricity is used by computers and the internet, a figure expected to double over the next decade. Much of this is wasted in generating heat that, according to thermodynamic theory, is not needed for information processing; and over half is for cooling systems to remove the unwanted heat. The resulting carbon emissions are comparable to the total global aviation industry. If we can reduce the energy consumption of logic operations in information technologies, or scavenge just a fraction of the waste heat, the effect on energy use and carbon emissions could be vast. Recent research breakthroughs have opened up new possibilities for making tiny electronic components and circuits, based on individual molecules, which have the potential to do just that (since their behaviour is not constrained by the laws of classical physics). To make this a reality, we must first learn to understand and control quantum effects in electronic nanodevices. We can use a new material, graphene, to make mechanically and chemically stable electrodes and connect them to electrically-active molecules. New methods allow us to make a very small gap in graphene which is just the right size for a molecule or a single strand of DNA (for fast and cheap DNA sequencing). Chemical units have been developed that attach to molecules and adhere like sticky notes to the graphene contacts on each side of the gap.. With graphene electrodes we can also make magnetic connections to single molecules to create molecular memory devices. A phenomenon called quantum interference can dramatically affect the flow of electric current in molecules. Harnessing these quantum effects will enable us to make tiny switches that would consume very little energy, and to generate electricity from small differences in temperature. The time is ripe for a focused research effort, drawing together these advances to transform our understanding and to pave the way for practical applications. Our programme is one of discovery science with a view to practical benefit. QuEEN will first establish the basic platform technology for experiments on single-molecule devices, including selection of the best molecules and control of their quantum interference by a local electric field. It will conclude by seeking to transfer results from rather ideal (cryogenic) laboratory conditions to a real-world environment, at room temperature. In between those two challenges, we shall explore three particularly promising areas for scientific discovery and application: controlling the magnetic property of an electron, known as spin, for quantum interference for potential use in universal computer memories; seeing how much electricity a molecule can generate if its ends are held at different temperatures, offering the potential for energy harvesting; and finding the performance limits of a single-molecule transistor, for potential uses in low-power computing and timer-controllers for the Internet of Things. The research requires four core skill sets, which form a virtuous circle: chemistry, to design and synthesise the molecules at the heart of our devices and stick them reliably to electrodes; nanofabrication, to make molecule-sized gaps in graphene ribbons; measurement techniques and advanced instrumentation to control the environment and characterise the quantum effects; and theory, to predict the effects, screen potential molecules, and interpret the results. QuEEN brings together a research team with exactly the right mix of expertise; an Advisory Board with wide experience of successful technological entrepreneurship; and a group of industrial partners who will not only shape and assist with the research but also provide a pathway to technological innovation and real-world applications.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R029229/1
    Funder Contribution: 1,530,590 GBP

    As we gain ever-greater control of materials on a very small scale, so a new world of possibilities opens up to be studied for their scientific interest and harnessed for their technological benefits. In science and technology nano often denotes tiny things, with dimensions measured in billionths of metres. At this scale structures have to be understood in terms of the positions of individual atoms and the chemical bonds between them. The flow of electricity can behave like waves, with the effects adding or subtracting like ripples on the surface of a pond into which two stones have been dropped a small distance apart. Electrons can behave like tiny magnets, and could provide very accurate timekeeping in a smartphone. Carbon nanotubes can vibrate like guitar strings, and just as the pitch of a note can be changed by a finger, so they can be sensitive to the touch of a single molecule. In all these effects, we need to understand how the function on the nanoscale relates to the structure on the nanoscale. This requires a comprehensive combination of scientific skills and methods. First, we have to be able to make the materials which we shall use. This is the realm of chemistry, but it also involves growth of new carbon materials such as graphene and single-walled carbon nanotubes. Second, we need to fabricate the tiny devices which we shall measure. Most commonly we use a beam of electrons to pattern the structures which we need, though there are plenty of other methods which we use as well. Third, we need to see what we have made, and know whether it corresponds to what we intended. For this we again use beams of electrons, but now in microscopes that can image how individual atoms are arranged. Fourth, we need to measure how what we have made functions, for example how electricity flows through it or how it can be made to vibrate. A significant new development in our laboratory is the use of machine learning for choosing what to measure next. We have set ourselves the goal that within five years the machine will decide what the next experiment should be to the standard of a second-year graduate student. The Platform Grant renewal 'From Nanoscale Structure to Nanoscale Function' will provide underpinning support for a remarkable team of researchers who bring together exactly the skills set which is needed for this kind of research. It builds on the success of the current Platform Grant 'Molecular Quantum Devices'. This grant has given crucial support to the team and to the development of their careers. The combination of skills, and the commitment to working towards shared goals, has empowered the team to make progress which would not have been possible otherwise. For example, our team's broad range of complementary skills were vital in allowing us to develop a method, now patented, for making nanogaps in graphene. This led to reproducible and stable methods of making molecular quantum devices, the core subject of that grant. The renewal of the Platform Grant will underpin other topics that also build on achievements of the current grant, and which require a similar set of skills to determine how function on the nanoscale depends on structure on the nanoscale. You can get a flavour of the research to be undertaken by the questions which motivate the researchers to be supported by the grant. Here is a selection. Can we extend quantum control to bigger things? Can molecular scale magnets be controlled by a current? How do molecules conduct electricity? How can we pass information between light and microwaves? How can we measure a thousand quantum devices in a single experiment? Are the atoms in our devices where we want them? Can computers decide what to measure next? As we make progress in questions like these, so we shall better understand how structure on the nanoscale gives rise to function on the nanoscale. And that understanding will in turn provide the basis for new discoveries and new technologies.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.