
German Aerospace Center (DLR)
German Aerospace Center (DLR)
16 Projects, page 1 of 4
assignment_turned_in Project2024 - 2028Partners:Department for Transport, Transport for Greater Manchester, O2 Telefonica Europe plc, Arup Group, TfL +11 partnersDepartment for Transport,Transport for Greater Manchester,O2 Telefonica Europe plc,Arup Group,TfL,Loughborough University,Immense Simulations,German Aerospace Center (DLR),Sustrans,Atkins,Vectare Limited,Connected Places Catapult,NOTTINGHAM CITY COUNCIL,Veitch Lister Consulting (UK),Lime Technology Limited,PTV System Software und Consulting GmbHFunder: UK Research and Innovation Project Code: MR/X03500X/1Funder Contribution: 1,250,960 GBPDomestic transport is the UK's highest emission sector, and congestion in cities is costly (e.g. London £5.1bn in 2021). Drastically reducing urban car dominance is imperative to reach the UK's 2050 net-zero target, but also an unparalleled opportunity to create more equitable, inclusive and accessible cities of the future across the country. Recent UK investments of approximately £15bn seek to radically transform urban mobility and modality: £2bn for half of urban journeys to be cycled/walked by 2030 (e.g., cycle lanes, mini-Holland schemes), £5.7bn City Region Sustainable Transport Settlements (e.g., Manchester bus and cycle schemes), and £7bn to level up local bus services. To realise full investment potential, and develop holistic adoption pathways towards net-zero, inclusive mobility, multimodal transport must be effectively planned, managed and operated, with people and their differences as a core consideration. This is challenging for a complex system-of-systems. On the supply side, modes compete for limited road space on shared infrastructure, creating conflicts. On the demand side, modes complement each other in intermodal journeys, jointly influencing uptake. For example, cycle lanes promote cycling, but may impact road speeds and exacerbate congestion and pollution, highlighting the need to evaluate person-level mobility and system-level emissions. A recent survey reported two-thirds of disabled respondents finding cycling easier than walking, highlighting the need to consider the broad disability spectrum and the potential for cycle lanes to improve access for all. Therefore, holistically optimising cycle lane schemes, as with all multimodal schemes, requires integrated methodologies: fully capturing multimodal transport systems' distributed and interconnected processes, the complexities of modal competition and complementarity, and the heterogeneity of traffic and population. My research will overcome these research challenges and develop the first multiscale digital twin for the transport-people-emission nexus using a truly integrated approach to model and simulate multimodal urban transport, advancing and coalescing my adventurous research in multimodality, using traffic flow theory, agent-based modelling, and machine learning. This will enable the development of holistic adoption pathways towards net-zero, inclusive mobility through scenario testing and optimisation, with guidance and recommendations to support implementation. Leading a strong consortium of 3 cities and 12 partners, covering the entire multimodal transport value chain, I will collaboratively exploit the digital twin to realise UK strategic agendas: net-zero; Equity, Diversity and Inclusivity (EDI); and levelling-up. By holistically enhancing mobility for everyone, my Fellowship also will propel the Green Revolution for economic growth, leveraging the net-zero mission to unlock new business opportunities, and establish the UK as a global leader in digital technologies to tackle climate change. I will deliver a strong positive impact on making net-zero a net win for people, industry, the UK, and the planet, thereby enabling both me and the UK to become world leaders in multimodal urban transport, at the forefront of research and innovation.
more_vert assignment_turned_in Project2017 - 2025Partners:National Research Council of Canada, University of Liverpool, University of Liverpool, National Research Council Canada, DLR Oberpfaffenhofen +3 partnersNational Research Council of Canada,University of Liverpool,University of Liverpool,National Research Council Canada,DLR Oberpfaffenhofen,German Aerospace Center (DLR),CNRC,DLRFunder: UK Research and Innovation Project Code: EP/P031277/1Funder Contribution: 692,318 GBPThe vision for this research is to develop a novel toolset for flight simulation fidelity enhancement. This represents a step-change in simulator qualification, is well-timed making a significant contribution to the UoL initiated NATO STO AVT-296-RTG activity and will have an immediate impact through engagement with Industry partners. High fidelity modelling and simulation are prerequisites for ensuring confidence in decision making during aircraft design and development, including performance and handling qualities estimation, control law development, aircraft dynamic loads analysis, and the creation of a realistic piloted simulation environment. The ability to evaluate/optimise concepts with high confidence and stimulate realistic pilot behaviour are the kernels of quality flight simulation, in which pilots can train to operate aircraft proficiently and safely and industry can design with lower risk. Regulatory standards such as CS-FSTD(H) and FAA AC120-63 describe the certification criteria and procedures for rotorcraft flight training simulators. These documents detail the component fidelity required to achieve "fitness for purpose", with criteria based on "tolerances", defined as acceptable differences between simulation and flight, typically +/- 10% for the flight model. However, these have not been updated for several decades, while on the military side, the related practices in NATO nations are not harmonised and have often been developed for specific applications. Methods to update the models for improved fidelity are mostly ad-hoc and, without a strong scientific foundation, are often not physics-based. This research will provide a framework for such harmonisation removing the barriers to adopting physics-based flight modelling and will create new, more informed, standards. In this research two aspects of fidelity will be tackled, predictive fidelity (the metrics and tolerances in the standards) and perceptual fidelity (pilot opinion). The predictive fidelity aspect of the research will use System Identification techniques to provide a systematic framework for 'enhancing' a physics-based simulation model. The perceptual fidelity research will develop a rational, novel process for task-specific motion tuning together with a robust methodology for capturing pilots' subjective assessment of the overall fidelity of a simulator. Extensive use will be made of flight simulation and real-world flight tests throughout this project in both the predictive and perceptual fidelity research.
more_vert assignment_turned_in Project2013 - 2016Partners:German Aerospace Center (DLR), DLR Oberpfaffenhofen, University of Southampton, Rolls-Royce Plc (UK), Rolls-Royce (United Kingdom) +4 partnersGerman Aerospace Center (DLR),DLR Oberpfaffenhofen,University of Southampton,Rolls-Royce Plc (UK),Rolls-Royce (United Kingdom),Rolls-Royce (United Kingdom),University of Southampton,[no title available],DLRFunder: UK Research and Innovation Project Code: EP/K017551/1Funder Contribution: 323,467 GBPNoise and emissions (carbon dioxide and nitrogen oxides) from jet engines are a major issue, with public expectations of quieter and cleaner skies, despite the rapid growth in commercial air transportation. Research on aircraft noise is of major importance to many stakeholders in the UK. London Heathrow enforces some of the most stringent noise regulations of any of the world's major city airports. Also Rolls-Royce, one of the UK's premier engineering companies, currently has a 30% share of the civil-engine market, making it the world's second largest supplier of civil aircraft engines. In addition to the economic benefits, reducing aircraft noise and emissions also benefits society, improving the quality of life, and in some instances the health, of people living and working near airports. One of the principal aims in the ACARE (Advisory Council for Aeronautics Research in Europe) 2020 vision is a 50% reduction in perceived average noise levels. Notwithstanding the significant investment in aircraft noise research in Europe and the U.S. during the last two decades, this vision will still require considerable technological advances to make airplanes substantially quieter. The key application of the majority of research in aeroacoustics is aircraft noise. Spectral broadening refers to the scattering of tonal sound fields by turbulence, whereby the interaction of the sound with a random, time-varying, turbulent flow results in power lost from the tone and distributed into a broadband field around the tone frequency. When the proportion of scattered power is small relative to the power that remains in the tone, this is termed "weak scattering". However, spectral broadening can lead to the disappearance of the tone itself, replaced by a broadband hump: this is termed "strong scattering". The advent of the high-bypass-ratio turbofan engine led to a significant step-change reduction in noise from jet engines, principally due to lower levels of jet noise. A consequence of this reduction in jet noise was that, relative to other sources, fan, core and turbine noise became more important noise sources. In turbofan engines, spectral broadening occurs due to the aft radiated sound propagating through the exhaust jet shear layers. This affects the radiation of turbine tones, and to a lesser extent fan tones. It is likely that in order to generate another step-change reduction in aircraft engine noise, radical changes to the engine's design will be required. Currently advanced open-rotor contra-rotating propeller concepts are being reappraised due to the significant fuel efficiency savings they can provide. However open-rotors generate a multitude of tones, and historically they have been perceived as being noisier compared to turbofan engines. Open-rotor noise testing conducted in free-jet wind-tunnels can be affected by the presence of the wind-tunnel jet shear layers through which the sound propagates because open-rotors generate highly protrusive tonal sound fields. The shear layers cause spectral broadening of the tones. The development of robust, validated prediction methods (theoretical and computational) will be a key output from this research. The capability to predict strong scattering is the key aim; currently there are no prediction methods available to predict strong scattering of tones from turbofan and open-rotor aircraft engines. The acquisition of a model-scale experimental database of measurements of spectral broadening obtained in the laboratory will be the other key output from this research. There is currently no such database available; the data will be used for validation purposes, as well as to improve our understanding of the scattering phenomenon. In summary, the research project will be the first comprehensive study on spectral broadening in aeroacoustics, with key applications directly linked to noise emissions from both turbofan and open-rotor aircraft engines.
more_vert assignment_turned_in Project2016 - 2019Partners:Curtin University, FEI Company, Natural History Museum, The University of Texas at Austin, Glasgow Science Centre Ltd +23 partnersCurtin University,FEI Company,Natural History Museum,The University of Texas at Austin,Glasgow Science Centre Ltd,Jeol UK Ltd,Pufferfish Ltd,FEI Company,Berkeley Geochronology Center,German Aerospace Center (DLR),Curtin University,University of Edinburgh,Pufferfish Ltd,The Natural History Museum,NERC British Geological Survey,DLR,Autonomous University of Barcelona (UAB),DLR Oberpfaffenhofen,University of Glasgow,The Hunterian,Glasgow Science Centre Ltd,University of Glasgow,BGC,British Geological Survey,Natural History Museum,Jeol UK Ltd,Hunterian Museum and Art Gallery,Natural History MuseumFunder: UK Research and Innovation Project Code: ST/N000846/1Funder Contribution: 381,686 GBPIn this research programme, planetary scientists and engineers from the University of Glasgow and the Scottish Universities Environmental Research Centre have joined forces to answer important questions concerning the origin and evolution of asteroids, the Moon and Mars. The emphasis of our work is on understanding the thermal histories of these planetary bodies over a range of time and distance scales, and how water and carbon-rich molecules have been transported within and between them. One part of the consortium will explore the formation and subsequent history of asteroids. Our focus is on primitive asteroids, which have changed little since they formed 4500 million years ago within a cloud of dust and gas called the solar nebula. These bodies are far smaller than the planets, but are scientifically very important because they contain water and carbon-rich molecules, both of which are essential to life. We want to understand the full range of materials that went to form these asteroids, and where in the solar nebular they came from. Although they are very primitive, most of these asteroids have been changed by chemical reactions that were driven by liquid water, itself generated by the melting of ice. We will ask whether the heat needed to melt this ice was produced by the decay of radioactive elements, or by collisions with other asteroids. The answer to this question has important implications for understanding how asteroids of all types evolved, and what we may find when samples of primitive asteroids are collected and returned to Earth. Pieces of primitive asteroids also fall to Earth as meteorites, and bring with them some of their primordial water, along with molecules that are rich in carbon. Many scientists think that much of the water on Earth today was obtained from outer space, and consortium researchers would like to test this idea. In order to understand the nature and volume of water and carbon that would have been delivered by meteorites, we first need to develop reliable ways to distinguish extraterrestrial carbon and water from the carbon and water that has been added to the meteorite after it fell to Earth. We plan to do this by identifying 'fingerprints' of terrestrial water and carbon so that they can be subtracted from the extraterrestrial components. One of the main ways in which this carbon was delivered to Earth during its earliest times was by large meteorites colliding with the surface of our planet at high velocities. Thus we also wish to understand the extent to which the extraterrestrial carbon was preserved or transformed during these energetic impact events. The formation and early thermal history of the moon is another area of interest for the consortium. In particular, we will ask when its rocky crust was formed, and use its impact history to determine meteorite flux throughout the inner solar system. To answer these questions we will analyse meteorites and samples collected by the Apollo and Luna missions to determine the amounts of chemical elements including argon and lead that these rocks contain. Information on the temperature of surface and sub-surface regions of Mars can help us to understand processes including the interaction of the planet's crust with liquid water. In order to be able to explore these processes using information on the thermal properties of martian rocks that will soon to be obtained by the NASA InSight lander, we will undertake a laboratory study of the effects of heating and cooling on a simulated martian surface. Hot water reaching the surface of Mars from its interior may once have created environments that were suitable for life to develop, and minerals formed by this water could have preserved the traces of any microorganisms that were present. We will assess the possibility that such springs could have preserved traces of past martian life by examining a unique high-altitude hot spring system on Earth.
more_vert assignment_turned_in Project2015 - 2024Partners:Athens International Airport, Massachusetts Institute of Technology, CRIDA A.I.E, Eurocontrol, Lancaster University +28 partnersAthens International Airport,Massachusetts Institute of Technology,CRIDA A.I.E,Eurocontrol,Lancaster University,SESAR,MIT,HALA SESAR Research Network,SESAR,Air France KLM,Northrop Grumman Sperry Marine Ltd,HALA SESAR Research Network,Eurocontrol,Adv Syst for Air Traffic Control (SICTA),Zurich Airport,DLR Oberpfaffenhofen,Northrop Grumman Park Air Systems,Goldair Handling,Massachusetts Institute of Technology,Airport Services Association,NATS Ltd,German Aerospace Center (DLR),KLM,NEXTOR-II Consortium,Airports Council Intl (ACI) Europe,DLR,Goldair Handling,NEXTOR-II Consortium,Airports Council Intl (ACI) Europe,Airport Services Association,NATS Ltd,CRIDA A.I.E,Lancaster UniversityFunder: UK Research and Innovation Project Code: EP/M020258/1Funder Contribution: 2,262,470 GBPCongestion at major airports in the UK and across Europe and the rest of the world is a serious and growing problem. Already Heathrow faces problems occasioned by serious congestion for a major part of the day while at Gatwick demand is expected to exceed capacity for 17 hours per day by 2025. According to a Eurocontrol study, planned capacity at the 138 Eurocontrol Statistical Reference Area (ESRA) airports is expected to increase by 41% in total by 2030, with demand exceeding airport capacity by as much as 2.3 million flights (or 11%) in the most-likely forecast growth scenario. The development and deployment of airport capacity is a major societal issue engendering intense public debate in the UK and around the world. Capacity at congested airports is expressed in slots. A slot identifies a time interval on a specific date during which a carrier is permitted to use the airport infrastructure for landing or take-off. Current slot allocation procedures suffer (inter alia) from the following limitations: 1)Simplistic modelling of the objectives and operational/regulatory constraints bearing on the multiple stakeholders involved in (and affected by) the slot allocation process. 2)Insufficient capture of the interactions encountered in airport networks. 3)The use of empirical or ad hoc processes for determining (rather than computing) declared capacity which address neither the uncertainties involved in airport capacity assessment nor the complexity and size of the real-world problem, even at the single-airport level. Consequently, existing approaches to the allocation of airport capacity fail in a number of critical ways to reflect the complexities presented by the real world. This creates allocation inefficiencies which, in turn, result in poor airport capacity utilisation with significant negative impacts on airport revenues, airline operating costs, the level of service offered to passengers and the environment. There is thus a pressing need to meet the major scientific challenge of developing novel mathematical models and solution approaches to transform the airport slot allocation process and its associated outcomes. The programme grant aims to do just that for a single airport and for a network of airports. Mathematical models will be developed and analysed which consider the objectives and requirements of all stakeholders and which take account of a wide range of operational and regulatory constraints. The intrinsic complexity of the proposed programme and its large scale (especially for the case of the network-wide slot allocation) will mean that it will provide an excellent test-bed for the development of new heuristics and hyper heuristics for large scale complex scheduling problems more widely. Algorithms that will be developed and tested by this project will provide essential support for the complex large scale capacity allocation problems that arise in other types of transportation networks, including rail networks. In addition, it could extend to other types of networks that share similar problem structures, such as those in energy and telecommunications. The models and solution techniques developed will underpin the development of novel decision support systems which have the potential to make a major impact on airport operations. The research team has an internationally leading profile in the areas of mathematical modelling, heuristic development, stochastic optimization, airport slot allocation, airport management and performance assessment. It has an excellent track record of research cooperation with all categories of stakeholders. It will cooperate closely with an impressive array of leading industry stakeholders in order to make sure that the work is as cutting edge industrially as it is scientifically.
more_vert
chevron_left - 1
- 2
- 3
- 4
chevron_right