Powered by OpenAIRE graph
Found an issue? Give us feedback

MAVIR ZRT

MAVIR MAGYAR VILLAMOSENERGIA-IPARI ATVITELI RENDSZERIRANYITO ZARTKORUEN MUKODO RESZVENYTARSASAG
Country: Hungary
6 Projects, page 1 of 2
  • Funder: European Commission Project Code: 101172829
    Overall Budget: 7,391,320 EURFunder Contribution: 5,996,440 EUR

    The optimised connection between power system design, preoperational planning, and real-time monitoring and control is crucial for effective stability management of future power systems. This applies to both the HVDC/MTDC power system connecting renewable energies and the AC/DC hybrid power system. Real-time capable algorithms and tools play a significant role in enabling optimal operation of the hybrid AC/DC system, ensuring the avoidance of circular flows and supporting security analyses. Additionally, innovative ancillary services such as frequency control, mitigation of periodic frequency fluctuations, voltage regulation, and reactive power control are essential for stability management. Managing and controlling hybrid AC/DC systems and HVDC grids is a complex task that requires a collaborative effort among the main stakeholders such as TSOs, DSOs, OEMs, Policymakers and regulatory bodies and Energy producers and energy consumers. The DAEDALOS project aims to address this complex task to facilitate the transition of the current power grid towards a novel approach where such AC/DC hybrid systems and MVDC/HVDC grids are foreseen to enable the growth of intermittent renewable energy sources. The DAEDALOS project is a 48-months project, divided in 7 WPs, that sets out to develop a comprehensive framework and specific advanced software tools to support planning, operation and monitoring of AC/DC hybrid systems and MVDC/HVDC grids on a state-of-the-art SCADA system, addressing and going beyond both current and future issues of these systems (such as low frequency oscillations detection and mitigation, RoCoF, short-circuit prevention, inertia estimation, etc.). DAEDALOS novel technologies will be developed and tested at TRL6-7: two demonstrators, one in the campus facility of University of Aachen, and the other in the University of Catalunya facility, will be realised to demonstrate the performances and the overall readiness of the proposed solution.

    more_vert
  • Funder: European Commission Project Code: 691777
    Overall Budget: 12,985,200 EURFunder Contribution: 12,985,200 EUR

    Four European TSOs of Central-Eastern Europe (Austria, Hungary, Romania, Slovenia), associated with power system experts, electricity retailers, IT providers and renewable electricity providers, propose to design a unique regional cooperation scheme: it aims at opening Balancing and Redispatching markets to new sources of flexibility and supporting such sources to act on such markets competitively. Thanks to a prototype aggregation solution and renewable generation forecasting techniques, flexibility providers – distributed generators (DG) and Commercial and Industrial (C&I) consumers providing demand response (DR) – are enabled, through retailers acting as flexibility aggregators, to provide competitive offers for Frequency Restoration Reserve (including secondary control activated with a response time between 30 seconds and 15 minutes). A comprehensive techno-economic model for the cross-border integration of such services involves a common activation function (CAF) tailored to congested borders and optimized to overcome critical intra-regional barriers. The resulting CAF is implemented into a prototype Regional Balancing and Redispatching Platform, securely integrated within the four TSOs’ IT systems: this makes research activities about cross-border integration flexible while linking with the aggregation solution. Use cases of growing complexity are pilot tested, going from the involvement of DR and DG into national balancing markets to cross-border competition between flexibility aggregators. Based on past experience with tertiary reserve, participating C&I consumers and DG are expected to provide close to 40MW of secondary reserve. Impact analyses of the pilot tests together with dissemination activities towards all the stakeholders of the electricity value chain will recommend business models and deployment roadmaps for the most promising use cases, which, in turn, contribute to the practical implementation of the European Balancing Target Model by 2020.

    more_vert
  • Funder: European Commission Project Code: 864274
    Overall Budget: 13,643,700 EURFunder Contribution: 9,996,500 EUR

    To achieve its energy goals EU needs to establish a geographically large market by initially improving its cross-border electricity interconnections. A geographically large market, based on imports and exports of electricity, could increase the level of competition, boost the EU’s security of electricity supply and integrate more renewables into energy markets. Electricity should, as far as possible, flow between Member States as easily as it currently flows within Member States, so as to increase sustainability potential and real competition as well as to drive economic efficiency of the energy system. To this end, FARCROSS aims to address this challenge by connecting major stakeholders of the energy value chain and demonstrating integrated hardware and software solutions that will facilitate the “unlocking” of the resources for the cross-border electricity flows and regional cooperation. The project will promote state-of-the-art technologies to enhance the exploitation/capacity/efficiency of transmission grid assets, either on the generation or the transmission level. The hardware and software solutions will increase grid observability to facilitate system operations at a regional level, exploit the full potential of transmission corridors for increased electricity flows that will facilitate transition to flow-based regional market coupling, consider cross-border connections and their specific ICT and grid infrastructure, planning to use a wide-area protection approach to ensure the safe integration of renewable energy sources into the grid, mitigate disturbances, increase power system stability. An innovative regional forecasting platform will be demonstrated for improved prognosis of renewable generation and demand response and a capacity reserves optimization tool will be tested to maximize cross-border flows. The non-harmonization of national regulation will be studied and measures will be recommended to avoid distortion of the technology benefits.

    more_vert
  • Funder: European Commission Project Code: 612748
    more_vert
  • Funder: European Commission Project Code: 101136119
    Overall Budget: 25,216,100 EURFunder Contribution: 20,000,000 EUR

    The current international situation makes the process of energy transition more critical for Europe than ever before. It is a key requirement to increase the penetration of renewables while aiming at making the infrastructure more resilient and cost-effective. In this context, digital twins (DT) build a key asset to facilitate all aspects of business and operational coordination for system operators and market parties. It is of fundamental importance to now start a process of agreement at European level so not to develop isolated instances but a federated ecosystem of DT solutions. Each operator should be able to make its own implementation decisions while preserving and supporting interoperability and exchange with the remaining ecosystem. Exactly this is the vision of the TwinEU consortium: enabling new technologies to foster an advanced concept of DT while determining the conditions for interoperability, data and model exchanges through standard interfaces and open APIs to external actors. The envisioned DT will build the kernel of European data exchange supported by interfaces to the Energy Data Space under development. Advanced modeling supported by AI tools and able to exploit High Performance Computing infrastructure will deliver an unprecedented capability to observe, test and activate a pan-European digital replica of the European energy infrastructure. In this process, reaching consensus is crucial: the consortium therefore gathers an unprecedented number of actors committed to achieving this common goal. The concepts developed by TwinEU span over 15 different European countries with a continuous coverage of the continental map. Demos will encompass key players at every level from transmission to distribution and market operators, while also testing the coordinated cross-area data exchange. The consortium also includes relevant industry players, research institutions and associations with a clear record in developing innovative solutions for Europe.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.