
GRUPO ANTOLIN-INGENIERIA SA
GRUPO ANTOLIN-INGENIERIA SA
18 Projects, page 1 of 4
Open Access Mandate for Publications assignment_turned_in Project2015 - 2018Partners:TECNALIA, Piaggio Aerospace (Italy), GRUPO ANTOLIN-INGENIERIA SA, ITRB, PININFARINA +5 partnersTECNALIA,Piaggio Aerospace (Italy),GRUPO ANTOLIN-INGENIERIA SA,ITRB,PININFARINA,FUNDACION CIDAUT,FHG,meo.,RELIGHT SRL,KULFunder: European Commission Project Code: 680629Overall Budget: 3,709,220 EURFunder Contribution: 3,253,440 EURREMAGHIC is focused on contributing to Europe’s rare earth recovery and magnesium recycling technologies, improving the efficiencies of these processes and advancing the technology readiness levels for a new generation of industrial processes that will produce new low cost competitive alloys for a wide variety of sectors across Europe’s manufacturing value chain. The project motivation lies on the fact that magnesium alloys can offer a significant weight reduction when compared to aluminium alloys. weight reduction is a cross sectorial key design driver, if a superior energy absorption and vibratory behaviour is added, magnesium is promising candidate for future application if some of its drawbacks are overcome, such as its cost, manufacturability problems, corrosion and creep behaviour and low allowable service temperature. Addition of Rare Earth Elements (REE) improves the performance of Mg alloys significantly, though a price increase has to be taken into account. REMAGHIC believes that by investing in recovery and recycling technologies, a new alloying process can be developed to yield low cost Mg+REE alloys. In order to do this, REE that are usually stockpiled (Ce, La) in favour of the most demanded ones (Nd, Dy) will be considered as attractive candidates to lower the price. This list of REE will be completed by other promising candidates found in the literature (Y, Gd, Sa). The project will contribute to reducing the dependency of the supply of critical elements (REE and Mg) on sources exterior to the EU and to solving the REE Balance Problem. REMAGHIC will contribute to the penetration of magnesium alloys in important sectors for the European industry (Transport, Energy, Biomedicine); it will foster the work done by Tier1s, and promote the interest of different OEMs on future generations of light structural components of competitive performance (that of primary Mg+REE alloys), low cost (that of primary Mg) and weight reduction (30%).
more_vert assignment_turned_in Project2010 - 2013Partners:GRUPO ANTOLIN-INGENIERIA SA, CENTEXBEL, Signify Netherlands BV, TITV, Heidelberg University +8 partnersGRUPO ANTOLIN-INGENIERIA SA,CENTEXBEL,Signify Netherlands BV,TITV,Heidelberg University,IMEC,UKA,TNO,INNOVATIONLAB GMBH,TU Berlin,FFD,PHILIPS ELECTRONICS NEDERLAND B.V.,Ohmatex ApSFunder: European Commission Project Code: 248048more_vert Open Access Mandate for Publications and Research data assignment_turned_in Project2020 - 2024Partners:Yordas GmbH, AMBROSIALAB SRL, TNO, ITENE, NAV +18 partnersYordas GmbH,AMBROSIALAB SRL,TNO,ITENE,NAV,AVANZARE,CONTROLNANO TECHNOLOGIES SL,LAURENTIA TECHNOLOGIES,INL,CNANO,APPLYNANO SOLUTIONS S.L.,SABANCI UNIVERSITY NANOTECHNOLOGY RESEARCH AND APPLICATION CENTER,THINKWORKS BV,UM,URV,ACZON SRL,GRUPO ANTOLIN-INGENIERIA SA,CEA,BIONANONET FORSCHUNGSGESELLSCHAFT MBH,IDEA,HIQ-NANO SRL,ART-ER,IOMFunder: European Commission Project Code: 862195Overall Budget: 5,979,610 EURFunder Contribution: 5,979,610 EURA major challenge for the global nanotechnology sector is the development of safe and functional engineered nanomaterials (ENMs) and nano-enabled products (NEPs). In this context, the application of the Safe-by-Design (SbD) concept has been adopted recently by the nanosafety community as a means to dampen human health and environmental risks, applying preventive safety measures during the design stage of a facility, process, material or product. However and despite its importance, SbD prescriptions are still in their infancy, and are hampered among other things by the lack of comprehensive data about the performance, hazard and release potential of the great variety of NEPs in use. SbD4Nano addresses that problem creating a comprehensive new e-infrastructure to foster dialogue and collaboration between all actors in the supply chain for a knowledge-driven definition of SbD setups that optimize hazard, technical performance and economic costs. Our project developes a validated rapid hazard profiling module, coupled to a new exposure-driven modelling framework to reduce toxicity. This safe-born material also undergoes a cost-benefit analysis algorithm to find the best compromise between safety and a industrially convenient technical performance. Finally, a new software interface where product information can be exchanged between the supply chain participants is the tool that wraps up, finishing the collaborative spirit of SbD4Nano between regulators, researchers and industry. Coherently with its goals, our SbD4Nano project is international and open-scienced in essence, with the clear aim of impacting the EU policies as well as directly and clearly benefiting the citizen.
more_vert Open Access Mandate for Publications assignment_turned_in Project2015 - 2018Partners:PRZEDSIEBIORSTWO BADAWCZO-PRODUKCYJNE OPTEL SP ZOO, IRT Jules Verne, Ford (Germany), MATEX VARESE Srl, GRUPO ANTOLIN-INGENIERIA SA +7 partnersPRZEDSIEBIORSTWO BADAWCZO-PRODUKCYJNE OPTEL SP ZOO,IRT Jules Verne,Ford (Germany),MATEX VARESE Srl,GRUPO ANTOLIN-INGENIERIA SA,CTAG,Arkema (France),CANOE,AIRBUS DEFENCE AND SPACE SA,FHG,University of Nantes,FFAFunder: European Commission Project Code: 636860Overall Budget: 5,030,000 EURFunder Contribution: 5,030,000 EURMore and more industrial sectors are demanding high performance composite materials to face new challenges demanded by the transport sector. Carbon and glass fibre unidirectional continuous tape reinforced composites are one of the most promising options. It would be reasonable to expect that the manufacturing methods to obtain composite parts made of this hybrid material will be capable to tailor-made and optimize even more the advantageous properties given by the tapes nature. However, at the moment, these technologies are not mature enough for a full industrial implementation. Main existing barriers are related to the high consumption of resources, lower rates of automation, high production of defective and the subsequent growth of the manufacturing costs. FORTAPE aims to solve these drawbacks through the development of an efficient and optimized integrated system for the manufacturing of complex parts based on unidirectional fibre tapes for its application in the automotive and aeronautical industry, with the minimum use of materials and energy. To achieve this objective, three main routes for fibre impregnation will be researched to manufacture the unidirectional carbon and glass fibre tapes: novel heating up technologies, melted supercritical fluid-aided thermoplastic polymers and fluidized bed of powders. Novel combination of process-machine approaches will be applied in overmoulding and in-situ consolidation to manufacture the composite parts for the targeted sectors. Novel mathematical modelling and computational simulation concepts will be developed to support the structural optimization and the failure prevention and new instrumentation strategies for process control will be implemented for the selection of the best process. The FORTAPE consortium, led by CTAG, gathers 10 partners from 5 different European countries, and covers the whole value chain needed to develop new composite technologies with efficient use of materials and energy.
more_vert Open Access Mandate for Publications assignment_turned_in Project2020 - 2023Partners:FOUNDATION FOR RESEARCH AND TECHNOLOGYHELLAS, Bundeswehr University Munich, 3SUN S.R.L., UNIPD, University of Regensburg +190 partnersFOUNDATION FOR RESEARCH AND TECHNOLOGYHELLAS,Bundeswehr University Munich,3SUN S.R.L.,UNIPD,University of Regensburg,IDIBAPS,CIC ENERGIGUNE,University of Bremen,UNIVERSITE DE LILLE,CSIC,G.TEC MEDICAL ENGINEERING GMBH,IHP GMBH,BSL,SIXONIA TECH,TUW,NSN,HEIDELBERG MATERIALS ITALIA CEMENTI SPA,University of Nottingham,CNRS,CIBER,UNISA,ProGnomics Ltd.,Emberion Ltd,EAB,PIXIUM VISION,Polytechnic University of Milan,Trinity College Dublin, Ireland,SUSS MicroTec Lithography GmbH,Chalmers University of Technology,NanOsc AB,AMO GMBH,DI,LNE,TU Delft,UCL,BEDIMENSIONAL SPA,TEKNOLOGIAN TUTKIMUSKESKUS VTT OY,CAU,Varta Microbattery (Germany),Evonik Nutrition & Care GmbH,GRUPO ANTOLIN-INGENIERIA SA,MAGNA ELECTRONICS SWEDEN AB,MCS,Infineon Technologies (Germany),HUN-REN CENTRE FOR ENERGY RESEARCH,AIRBUS OPERATIONS SL,M-Solv,University of Sheffield,MPG,STMicroelectronics (Switzerland),BMW Group (Germany),INSTITUTO NACIONAL DE INVESTIGACION Y TECNOLOGIA AGRARIA Y ALIMENTARIA OA MP,UCLM,ABB AB,INBRAIN NEUROELECTRONICS SL,MICRO RESIST TECHNOLOGY GESELLSCHAFT FUER CHEMISCHE MATERIALIEN SPEZIELLER PHOTORESISTSYSTEME MBH,KIT,Plastic Logic (United Kingdom),VARTA INNOVATION GMBH,OINT,GRAPHENE-XT SRL,LEONARDO,Carlos III University of Madrid,BMW (Germany),Singulus (Germany),CEA,UMINHO,RWTH,VRS,CRAYONANO AS,GRAPHMATECH AB,CRF,UCL,DIPC,AALTO,Printed Electronics Ltd,Imperial,INSERM,ICFO,UniPi,UZH,CIC biomaGUNE,confinis,LHT,AIRBUS HELICOPTERS,Siemens (Germany),QMUL,FNSR,Nanesa,AIXTRON LIMITED,IAW,ARCELORMITTAL,UPSud,QURV TECHNOLOGIES SL,IMech-BAS,Naturality Research & Development,CNR,CHALMERS INDUSTRITEK,EMBERION OY,TECNIUM,UNISTRA,WUT,Mellanox Technologies (Israel),NOKIA UK LIMITED,CNIT,University of Rome Tor Vergata,TU/e,TEMAS AG TECHNOLOGY AND MANAGEMENT SERVICES,INDORAMA VENTURES FIBERS GERMANY GMBH,Bundeswehr,AVANZARE,VMI,SUSS MicroTec Photomask Equipment,TECNALIA,BOKU,University of Ulm,FSU,University of Manchester,AIXTRON SE,UT,BIOAGE,BMVg,Mellanox Technologies (United States),University of Groningen,ICN2,EVONIK CREAVIS GMBH,FAU,NanoTechLab,FHG,ITME,TUD,FIOH,NAWATECHNOLOGIES,IMEC,DALLARA AUTOMOBILI SPA,INTER-QUIMICA,DTU,SISSA,University of Zaragoza,Sonaca (Belgium),AIRBUS DEFENCE AND SPACE GMBH,Composites Evolution (United Kingdom),HCPB,UAB,NOVALIA LIMITED,NOKIA SOLUTIONS AND NETWORKS ITALIA SPA,MEDICA SPA,NPL MANAGEMENT LIMITED,SCHAFFHAUSEN INSTITUTE OF TECHNOLOGY AG,HITACHI ENERGY SWEDEN AB,BASF SE,EVONIK DEGUSSA GmbH,IMDEA NANO,Umeå University,University of Ioannina,AMALYST,TME,Airbus (Netherlands),ULB,UNITS,GRAPHENEA SEMICONDUCTOR SL,IIT,INTERNACIONAL DE COMPOSITES SA,EPFL,G TEC,EGP,Technion – Israel Institute of Technology,SPAC SPA,ICON LIFESAVER LIMITED,BRETON SPA,KI,SIEC BADAWCZA LUKASIEWICZ - INSTYTUT MIKROELEKTRONIKI I FOTONIKI,ESF,BARNICES Y PINTURAS MODERNAS SOCIEDAD ANONIMA,UNIGE,BRUNO BALDASSARI & FRATELLI SPA,Sorbonne University,UH,USTL,Universität Augsburg,THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE,IDIBAPS-CERCA,University of Warwick,CIC nanoGUNE,Lancaster University,PHI-STONE AG,Philipps-University of Marburg,POLYMEM,CAMBRIDGE RAMAN IMAGING LTD,EPFZ,EMPA,TEMAS SOLUTIONS GMBH,ΕΛΜΕΠΑ,FIDAMC,THALESFunder: European Commission Project Code: 881603Overall Budget: 149,703,008 EURFunder Contribution: 149,703,008 EURThis proposal describes the third core project of the Graphene Flagship. It forms the fourth phase of the FET flagship and is characterized by a continued transition towards higher technology readiness levels, without jeopardizing our strong commitment to fundamental research. Compared to the second core project, this phase includes a substantial increase in the market-motivated technological spearhead projects, which account for about 30% of the overall budget. The broader fundamental and applied research themes are pursued by 15 work packages and supported by four work packages on innovation, industrialization, dissemination and management. The consortium that is involved in this project includes over 150 academic and industrial partners in over 20 European countries.
more_vert
chevron_left - 1
- 2
- 3
- 4
chevron_right