Powered by OpenAIRE graph
Found an issue? Give us feedback

IVW

INSTITUT FUER VERBUNDWERKSTOFFE GMBH
Country: Germany
19 Projects, page 1 of 4
  • Funder: European Commission Project Code: 101057988
    Overall Budget: 5,754,850 EURFunder Contribution: 5,754,840 EUR

    Infectious diseases pose a significant threat to both human health and the global economy, they account for more than 20% of global mortality and viruses are responsible for about one-third of these deaths. To date, we know of about 200 infectious diseases and about 80% of infectious diseases are transmitted by unclean hands touching contaminated surfaces. SUSAAN project is focussed on development of new sustainable antiviral and antimicrobial coatings for textiles and high traffic objects made of plastics and metal, involving textile, bathrooms and switches manufacture industries. In this context, it can be stated that most of the common hand-touch sites and/or objects are covered by the project so final impact would be extensive after the successful project execution, being the results of the project validated in three main market sectors through end users. Consortium Partners and core business are one of the strongest points of SUSAAN. Technological and scientific partners (LUREDERRA, NCSRD, IVW, CEIT and ITENE) are experts on main areas of nanoparticles, coatings, pretreatment, biobased nanocapsules and toxicity assessment. Companies involved cover the whole value change based on their core business including coatings production (TECNAN), biobased products (CELABOR), bathrooms manufacturing (ECZACIBASI), home appliances (PANASONIC) and textiles (ALMAXTEX). Last but not least, INTER IT will cover the activities on BPR assessment being VIRHEALTH (the expert on virology) on charge of standardized testing to determine virucidal and antimicrobial activity of the coatings and ARDITEC on charge of sustainability assessment. The final outcome of SUSAAN project is the validation of the new sustainable antimicrobial/antiviral nanocoating in different final products: high traffic objects (plastic and metallic) and textiles. Technical advantages and comparative results to current solutions will be used to present SUSAAN solutions to potential clients.

    more_vert
  • Funder: European Commission Project Code: 214355
    more_vert
  • Funder: European Commission Project Code: 677625
    Overall Budget: 5,868,680 EURFunder Contribution: 4,141,350 EUR

    Multimaterial systems combining metals with thermoplastic fiber reinforced polymer composites (TP-FRPC) are the key for light weight design in the automotive industry. However, the joining of the material partners remains main issue. Currently, no approach exists which sufficiently meets the three core requirements: weight neutrality, cost- and time efficiency and bonding strength. Technologies like adhesive bonding or bolted joints show good results for one or two of the criterions, but not for all three of them. The FlexHyJoin project aims at the development of a joining process for hybrid components, which satisfies all three criterions. Induction Joining (IJ) and Laser Joining (LJ) are combined, since they have complementary fields of application and most of all they do not require additional material and are therefore weight neutral joining methods. Thus, the full lightweight potential is preserved. Additionally, a surface texturing method for the metal is integrated in the approach, which leads to a form closure bonding, providing a high mechanical bonding performance. Finally, a main aspect of the FlexHyJoin project is to integrate the surface texturing as well as both joining methods in a single, continuous, and fully automatized pilot process with an overall process control and supervision system. This leads to a maximum of time- and cost-efficiency and will allow the future application of the approach in the mass production of automotives. The key for the automation is an online process control and quality assurance. The FlexHyJoin project provides an essential enabler technology for future mobility concepts. The final result is an innovative joining process for fiber reinforced polymers and metals, suiting the strict requirements of automotive industry and enabling the broad application of hybrid material systems.

    more_vert
  • Funder: European Commission Project Code: 246243
    more_vert
  • Funder: European Commission Project Code: 769140
    Overall Budget: 3,999,920 EURFunder Contribution: 3,999,920 EUR

    HARVEST will unleash the potential of breakthrough technologies by creating integrated multifunctional systems for Aeronautics via the development of i) Structural composites, comprised of hierarchical carbon fiber (CF) reinforcements and an innovative thermoset 3R (repair, recycle and reprocess) epoxy matrix with ThermoElectric Generation (TEG) and self-repair capabilities, ii) Autonomously TEG -driven integrated systems for on- and off-line structural health monitoring-(SHM) and iii) Wired and low-power wireless SHM data transmission and mining system. The innovative intelligent materials and parts, will be manufactured in purposefully developed pilot lines aiming at reducing production time and costs. CFs yarns or textiles will be coated with nanomaterials using facile & environmentally friendly deposition and doping methods in a Roll-to-Roll (R2R) pilot line targeting dramatically increased TEG performance compared to existing composites, carbon and organic based materials. Innovative TEG-hierarchical composites will be manufactured with new generation 3R thermoset matrix systems enabling out of autoclave manufacturing and self-repair. These will be interfaced with a purposely designed hardware to (i) power inherent functionalities (e.g. strain, damage or UV-exposure sensing), (ii) drive external elements (e.g. piezo electric sensors for SHM) and (iii) transmit sensing signals to a remote panel. The autonomous SHM systems will increase the safety of civil aviation; reduce emissions and maintenance & life cycle costs. The proposed technologies will be finally integrated in two aircraft demonstrator parts, targeting areas with temperature gradients (e.g. engine vs. environment, inside vs. outside fuselage during flight) or where quick heat dissipation is essential (e.g. landing gear after take-off). The location of suitable heat sinks in real structures will be established using advanced numerical tools to identify thermal gradients in operating environment.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.