
SeeQC UK
SeeQC UK
5 Projects, page 1 of 1
assignment_turned_in Project2024 - 2033Partners:National Quantum Computing Centre, Nu Quantum, Universal Quantum Ltd, Quandela SAS, Oxford Quantum Circuits +19 partnersNational Quantum Computing Centre,Nu Quantum,Universal Quantum Ltd,Quandela SAS,Oxford Quantum Circuits,PhaseCraft Ltd,UCL,Toshiba Europe Limited (UK),THALES UK LIMITED,IQM,BT plc,SeeQC UK,National Physical Laboratory,Bluefors Oy,Oxford Ionics,Quantum Motion,ZURICH INSTRUMENTS AG,PASQAL,Keysight Technologies,Riverlane,IBM UNITED KINGDOM LIMITED,Oxford Instruments (United Kingdom),Amazon Web Services EMEA SARL,QuantinuumFunder: UK Research and Innovation Project Code: EP/Y035046/1Funder Contribution: 8,340,420 GBPThe primary objective of the QC2 CDT is to train the upcoming generation of pioneering researchers, entrepreneurs, and business leaders who will contribute to positioning the UK as a global leader in the quantum-enabled economy by 2033. The UK government and industry have demonstrated their commitment by investing £1 billion in the National Quantum Technologies Programme (NQTP) since 2014. In its March 2023 National Quantum Strategy document, the UK government reaffirmed its dedication to quantum technologies, pledging £2.5 billion in funding over the next decade. This commitment includes the establishment of the UKRI National Quantum Computing Centre (NQCC). The fields of quantum computation and quantum communications are at a pivotal juncture, as the next decade will determine whether the long-anticipated technological advancements can be realized in practical, commercially-viable applications. With a wide-ranging spectrum of research group activities at UCL, the QC2 CDT is uniquely situated to offer comprehensive training across all levels of the quantum computation and quantum communications system stacks. This encompasses advanced algorithms and quantum error-correcting codes, the full range of qubit hardware platforms, quantum communications, quantum network architectures, and quantum simulation. The QC2 CDT has been co-developed through a partnership between UCL and a network of UK and international partners. This network encompasses major global technology giants such as IBM, Amazon Web Services and Toshiba, as well as leading suppliers of quantum engineering systems like Keysight, Bluefors, Oxford Instruments and Zurich Instruments. We also have end-users of quantum technologies, including BT, Thales, NPL, and NQCC, in addition to a diverse group of UK and international SMEs operating in both quantum hardware (IQM, NuQuantum, Quantum Motion, SeeQC, Pasqal, Oxford Ionics, Universal Quantum, Oxford Quantum Circuits and Quandela) and quantum software (Quantinuum, Phase Craft and River Lane). Our partners will deliver key components of the training programme. Notably, BT will deliver training in quantum comms theory and experiments, IBM will teach quantum programming, and Quantum Motion will lead a training experiment on semiconductor qubits. Furthermore, 17 of our partners will co-sponsor and co-supervise PhD projects in collaboration with UCL academics, ensuring a strong alignment between the research outcomes of the CDT and the critical research objectives of the UK quantum economy. In total the cash and in-kind contributions from our partners exceed £9.1 million, including £2.944 million cash contribution to support 46 co-sponsored PhD studentships. QC2 will provide an extensive cohort-based training programme. Our students will specialize in advanced research topics while maintaining awareness of the overarching system requirements for these technologies. Central to this programme is its commitment to interdisciplinary collaboration, which is evident in the composition of the leadership and supervisory team. This team draws expertise from various UCL departments, including Chemistry, Electronics and Electrical Engineering, Computer Science, and Physics, as well as the London Centre for Nanotechnology (LCN). QC2 will deliver transferable skills training to its students, including written and oral presentation skills, fostering an entrepreneurial mindset, and imparting techniques to maximize the impact of research outcomes. Additionally, the programme is committed to taking into consideration the broader societal implications of the research. This is achieved by promoting best practices in responsible innovation, diversity and inclusion, and environmental impact.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::09da1c7bb3533d9ebbb25b8e5c06b6a1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::09da1c7bb3533d9ebbb25b8e5c06b6a1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2033Partners:CSconnected, SeeQC UK, K L A-Tencor Ltd, National Physical Laboratory, Advanced Hall Sensors Ltd +19 partnersCSconnected,SeeQC UK,K L A-Tencor Ltd,National Physical Laboratory,Advanced Hall Sensors Ltd,Oxford Instruments Plasma Technology,Compound Semiconductor App. Catapult,Teratech Components Ltd,Seagate (United Kingdom),CARDIFF UNIVERSITY,ICS Integrated Compound Semiconductor Lt,Poro Technologies Ltd,Photon Design (United Kingdom),Carl Zeiss (United Kingdom),Qinetiq (United Kingdom),Renishaw plc (UK),BT plc,Bruker UK Ltd,QLM Technology Ltd,Rockley Photonics Limited (UK),MicroLink Devices UK Ltd,IQE PLC,PRFI Ltd,Compound Semiconductor Centre (United Kingdom)Funder: UK Research and Innovation Project Code: EP/Y035801/1Funder Contribution: 8,223,410 GBP"Semiconductors" are synonymous with "Silicon Chips". After all Silicon supported computing technologies in the 20th century. But Silicon is reaching fundamental limits and already many of the technologies we now take for granted are only possible because of Compound Semiconductors (CS). These include The Internet, Smart Phones, GPS and Energy efficient LED lighting! CSs are also at the heart of most of the new technologies expected in the next few years including 6G wireless, ultra-high speed optical fibre connectivity, LIDAR for autonomous vehicles, high voltage switching for electric vehicles, the IoT and high capacity data storage. CSs also offer huge opportunities for energy efficiency and net zero. CSs are often made in small quantities and using bespoke techniques and manufacturers have had to put together functions by assembling discrete devices. But this is expensive and for many of the new applications scale-up and integration, along the lines of the Silicon Chip, are needed CDT research will involve the science of large scale CS manufacturing, manufacturing integrated CS on Silicon and applying the manufacturing approaches of Silicon to CS; it will generate novel integrated functionality and all with an emphasis on finding environmentally sustainable manufacturing methods. CIVIC PRIORITY: This CDT is a fundamental part of the strategic development of the CS Cluster centred in South Wales, and in linking it to activity across the UK. It is part of a wider training strategy including apprenticeships, MScs and CPD, to train and upskill the entire workforce. The latest skills requirements have been identified by partner companies and through working with Welsh Government, CSconnected and the CS Applications Catapult The partners support the CDT financially and with their time. This is because the limiting factor to rapid cluster growth is skilled people. The expected PhD level jobs increase for the existing cluster companies alone would mop up all the students trained by this CDT. We provide a £2k stipend top-up to maximise recruitment from all backgrounds. However, the CDT does more - clusters are about cross-fertilisation of people and ideas and the CDT combines academics from 4 universities with leading and complementary expertise in CS. We form teams of two academics from different universities, one industry supervisor and the PhD student to create and carry out each PhD. The CDT also ensures the whole cohort regularly works together to exchange new knowledge and ideas and maintain breadth for each student. The UK and Welsh administrations see CS as an opportunity to boost the economy with high technology jobs and the UK government uses the CDT as part of its pitch to overseas companies to locate here. APPROACH and OUTCOMES: a 1+3 program where Year 1 (Y1) is based in Cardiff, with provision via taught lectures and transferable skills training, hands on and in-depth practical training and workshops led by University and Industry Partner staff. Following requests from Y2-4 students the industry workshops are presented in hybrid format so all Y2-4 students can further benefit from this program and where we now cycle presenters, companies and specific topics over 3 years. A dedicated training clean room allows rapid practical progress in a supportive environment, learning from doing, experts and the rest of the cohort and then an industry facing cleanroom, co-located with industry staff and manufacturing scale equipment, where students learn the future CS manufacturing skills. This maximises exchange of ideas, techniques and approach and the potential for exploitation. Both students and industry partners have praised the practical skills this produces. Y2-Y4 consist of an in depth PhD project, co-created with industry and hosted at one of the 4 universities, and specialised whole cohort training and events, including energy audit, research ethics and innovative outreach
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::dfc6900ee1b98259bb0f81621f822d92&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::dfc6900ee1b98259bb0f81621f822d92&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2027Partners:University of the West of Scotland, Denchi Power Ltd, Loughborough University, Inseto (UK) Limited, National Physical Laboratory +24 partnersUniversity of the West of Scotland,Denchi Power Ltd,Loughborough University,Inseto (UK) Limited,National Physical Laboratory,eFutures,Nano Dimension GmbH,Heriot-Watt University,QUB,Vector Photonics,ARM (United Kingdom),Labman Automation Ltd,Durham University,PragmatIC (United Kingdom),TouchLab,ARM Ltd,Scotland 5G Centre,E-textiles network,University of Southampton,Manufacturing Technology Centre (United Kingdom),Quantum Science Ltd,QMUL,University of Glasgow,Edinburgh Napier University,Printed Eelectronics ltd,SeeQC UK,Kelvin Nanotechnology (United Kingdom),Innovation Centre for Sensor and Imaging Systems,Glasgow Caledonian UniversityFunder: UK Research and Innovation Project Code: EP/Y015215/1Funder Contribution: 3,076,010 GBPThe electronics industry "ElecTech" sector is central to the UK's future economy, environment, and society. With over 1 million employees in sectors enabled by electronics, the contribution of electronic technologies is indispensable. At the heart of electronics are nanoelectronic semiconductor "chips", and it has a leading position in semiconductor intellectual property vendors and emerging areas such as quantum technologies, sustainable electronics manufacturing, and compound semiconductors. The UK's potential lies, and where its future role in the global semiconductor value chain lies, as evidenced in the BEIS committee inquiry. We will establish an Automated Nano AnaLysing, characterisatiOn and additive packaGing sUitE (ANALOGUE) suite. ANALOGUE will be an exemplary facility that provides a fully automated platform for semiconductor processing, from devices to applications, with centralised workflow design, data collection/capture and real-time analytics. ANALOGUE will enable wafer-scale fully automated electrical characterisation of devices including reliability and temperature cycling capabilities. A fully automated back-end processing platform is integrated enabling die- and wire-bonding, 3D printed electronics and additive heterogenous packaging, co-located with high-resolution printed circuit laser patterning. Co-located with the £35M James Watt Nanofabrication Centre (JWNC), and the Centre for Advanced Electronics (CAE), the facility will enable devices-to-systems across the ICT spectrum, towards a user-centric and responsible design approach for electronics manufacturing. With a team representing two application-oriented user groups, medical and industrial nanoelectronics, we will create an ecosystem whereby manufacturing, users, and circular economy experts are brought together as users of ANALOGUE. ANALOGUE will support research on implantables, wearables, and diagnostics, through ultrasonic devices. Embedding sustainable manufacturing and onshoring the research into the backend processes of electronics is crucial to meeting the requirements of future electronics design flows. Original Equipment Manufacturers (OEM) buyers like Apple are already demanding commitments from suppliers to decarbonise their products, with distributors expected to assess each product's environmental impact throughout its lifecycle - from design and manufacture to end-of-life. As such, ANALOGUE allows UK researchers to explore the "black-box" of the semiconductor supply chain using automated characterisation and heterogenous packaging, encompassed by an automation and data collection framework for evaluating the efficacy of our experimental workflows. ANALOGUE will be accessible to the UK's research community across HealthTech, Beyond-Moore Computing, and Circular and Sustainable Electronics. Owing to its automated and streamlined nature, ANALOGUE will allow users from different institutions to utilise the suite remotely, facilitated by expert technical support, enabling rapid innovation across the nanoelectronics spectrum, insulating the UK's electronics research eco-system from global supply chain interruptions, e.g. chip shortages, and underpinning new research into otherwise offshore aspects of the electronics manufacturing. ANALOGUE builds on the UK's internationally acknowledged strengths in low-power IC Design, electronic materials, and applications in sustainable manufacturing. The Glasgow collaboration as an essential link in the supply chain linking materials producers (e.g., IQE), designers (Arm) manufacturers (PragmatIC Semiconductors, Printed Electronics, MTC), with academic users. The ANALOGUE team will regularly engage with these stakeholders through joint projects, meetings, workshops, and targeted events. The alignment of the proposal with the strategic sustainable systems focus of UofG will also help the envisaged research's long-term planning and strategy building.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::79de2e1ac87d8ff4e30f29be9f545a5d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::79de2e1ac87d8ff4e30f29be9f545a5d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2025 - 2033Partners:QuiX Quantum B.V., THALES UK LIMITED, M Squared Lasers (United Kingdom), British Telecommunications plc, GLOphotonics SAS +26 partnersQuiX Quantum B.V.,THALES UK LIMITED,M Squared Lasers (United Kingdom),British Telecommunications plc,GLOphotonics SAS,Alter Technology UK Ltd,Craft Prospect Ltd,SeeQC UK,National Physical Laboratory,Kelvin Nanotechnology (United Kingdom),Amazon Web Services EMEA SARL,RedWave Labs,Bay Photonics Ltd,Oxford Instruments Plasma Technology,Innovation Centre for Sensor and Imaging Systems,Skylark Lasers,University of Strathclyde,Rolls-Royce Plc (UK),ZURICH INSTRUMENTS AG,MBDA (United Kingdom),Glasgow Science Centre Ltd,Riverlane,Oxford Quantum Circuits,STMicroelectronics,Arqit Limited,Fraunhofer UK Research Ltd,Scottish Universities Physics Alliance,Coherent Scotland Ltd,Atomic Weapons Establishment,Wideblue Ltd,AegiQFunder: UK Research and Innovation Project Code: EP/Y035089/1Funder Contribution: 7,909,260 GBPQuantum Technology is based on quantum phenomena that govern physics on an atomic scale, enabling key breakthroughs that enhance the performance of classical devices and allow for entirely new applications in communications technology, imaging and sensing, and computation. Quantum networks will provide secure communication on a global scale, quantum sensors will revolutionise measurements in fields such as geology and biomedical imaging, and quantum computers will efficiently solve problems that are intractable even on the best future supercomputers. The economic and societal benefit will be decisive, impacting a wide range of industries and markets, including engineering, medicine, finance, defence, aerospace, energy and transport. Consequently, Quantum Technologies are being prioritised worldwide through large-scale national or trans-national initiatives, and a healthy national industrial Quantum Technology ecosystem has emerged including supply chain, business start-ups, and commercial end users. Our Centre for Doctoral Training in Applied Quantum Technologies (CDT-AQT) will address the national need to train cohorts of future quantum scientists and engineers for this emerging industry. The training program is a partnership between the Universities of Strathclyde, Glasgow and Heriot-Watt. In collaboration with more than 30 UK industry partners, CDT-AQT will offer advanced training in broad aspects of Quantum Technology, from technical underpinnings to applications in the three key areas of Quantum Measurement and Sensing, Quantum Computing and Simulation, and Quantum Communications. Our programme is designed to create a diverse community of responsible future leaders who will tackle scientific and engineering challenges in the emerging industrial landscape, bring innovative ideas to market, and work towards securing the UK's competitiveness in one of the most advanced and promising areas of the high-tech industry. The quality of our training provision is ensured by our supervisors' world-class research backgrounds, well-resourced research environments at the host institutions, and access to national strategic facilities. Industry engagement in co-creation and co-supervision is seen as crucial in equipping our students with the transferable skills needed to translate fundamental quantum physics into practical quantum technologies for research, industry, and society. To benefit the wider community immediately, we will make Quantum Technologies accessible to the general public through dedicated outreach activities, in which our students will showcase their research and exhibit at University Open Days, schools, science centres and science festivals.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d700a722d018912e0565015451060ba3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d700a722d018912e0565015451060ba3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2025 - 2033Partners:Quantinuum, Xanadu, AegiQ, UT, National Quantum Computing Centre +38 partnersQuantinuum,Xanadu,AegiQ,UT,National Quantum Computing Centre,QuiX Quantum B.V.,Quantum Base Alpha,UvA,Atom Computing,Rigetti & Co Inc,National Physical Laboratory,PhaseCraft Ltd,University of Copenhagen,University of Maryland, College Park,IQM,PASQAL SAS,Quandela SAS,University of Edinburgh,Oxford Quantum Circuits,Infleqtion,Nu Quantum,SandboxAQ,Hartree Centre,Input Output Global (IOG),Riverlane,Leiden University,Lawrence Berkeley National Laboratory,IonQ,ORCA Computing Ltd,SICSA,Algorithmiq Ltd,Sorbonne University,Google,Entropica Labs,Cambridge Consultants (United Kingdom),British Telecommunications plc,Veriqloud,Atomic Weapons Establishment,University of Waterloo,SeeQC UK,Amazon Web Services EMEA SARL,Alice & Bob,Sydney Quantum AcademyFunder: UK Research and Innovation Project Code: EP/Y035097/1Funder Contribution: 7,824,130 GBPQuantum technology will revolutionise many aspects of life and bring enormous benefits to the economy and society. The Centre for Doctoral Training in Quantum Informatics (QI CDT) will provide advanced training in the structure, behaviour, and interaction of quantum hardware, software, and applications. The training programme spans computer sciences, mathematics, physics, and engineering, and will enable the use of quantum technology in a way that is integrable, interoperable, and impactful, rather than developing the hardware itself. The training programme targets three research challenges with a strong focus on end user impact: (i) quantum service architecture concerns how to design quantum networks and devices most usefully; (ii) scalable quantum software is about feasible application at scale of quantum technology and its integration with other software; and (iii) quantum application analysis investigates how quantum technology can be used most advantageously to solve end user problems. The QI CDT will offer 75+ PhD students an intensive 4-year training and research programme that equips them with the skills needed to tackle the research challenges of quantum informatics. This new generation will be able to integrate quantum hardware with high-performance computing, design effective quantum software, and apply this in a societally meaningful way. The QI CDT brings together a coalition with national reach including over 65 academic experts in quantum informatics from five universities - the University of Edinburgh, the University of Oxford, University College London, Heriot-Watt University, and the University of Strathclyde - and three public sector partners - the National Quantum Computing Centre, the National Physical Laboratory, and the Hartree Centre. A network of over 30 industry partners, diverse in size and domain expertise, and 9 leading international universities, give students the best basis for meaningful and collaborative research. A strong focus on cohort-based training will make QI CDT students into a diverse network of future leaders in Quantum Informatics in the UK.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9a7049fdb43fbbfebbf72e128f008743&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9a7049fdb43fbbfebbf72e128f008743&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu